import os import gradio as gr import tensorflow as tf import numpy as np from tensorflow.keras.preprocessing import image from PIL import Image from reportlab.lib.pagesizes import letter from reportlab.pdfgen import canvas from reportlab.lib import colors from reportlab.platypus import Table, TableStyle import smtplib from email.message import EmailMessage # Load the trained model model = tf.keras.models.load_model("my_keras_model.h5") # Read HTML content from `re.html` with open("templates/re.html", "r", encoding="utf-8") as file: html_content = file.read() # Create reports directory REPORTS_DIR = "reports" os.makedirs(REPORTS_DIR, exist_ok=True) # Email configuration from environment variables SENDER_EMAIL = os.getenv("SENDER_EMAIL", "your-email@gmail.com") SENDER_PASSWORD = os.getenv("SENDER_PASSWORD", "your-app-password") # Function to send email with PDF attachment def send_email_with_attachment(to_email, file_path, patient_name): msg = EmailMessage() msg["Subject"] = f"Bone Fracture Report for {patient_name}" msg["From"] = SENDER_EMAIL msg["To"] = to_email msg.set_content(f"Dear {patient_name},\n\nAttached is your bone fracture detection report.\n\nThank you!") with open(file_path, "rb") as f: file_data = f.read() msg.add_attachment(file_data, maintype="application", subtype="pdf", filename="report.pdf") try: with smtplib.SMTP_SSL("smtp.gmail.com", 465) as server: server.login(SENDER_EMAIL, SENDER_PASSWORD) server.send_message(msg) print(f"✅ Email sent to {to_email}") except Exception as e: print(f"❌ Failed to send email: {e}") # Function to generate report def generate_report(name, age, gender, weight, height, allergies, cause, xray, email): image_size = (224, 224) def predict_fracture(xray_path): img = Image.open(xray_path).resize(image_size) img_array = image.img_to_array(img) / 255.0 img_array = np.expand_dims(img_array, axis=0) prediction = model.predict(img_array)[0][0] return prediction prediction = predict_fracture(xray) diagnosed_class = "Normal" if prediction > 0.5 else "Fractured" severity = "Mild" if prediction < 0.3 else "Moderate" if prediction < 0.7 else "Severe" # Save X-ray image for report img = Image.open(xray).resize((300, 300)) img_path = os.path.join(REPORTS_DIR, "xray.png") img.save(img_path) # Generate PDF report report_path = os.path.join(REPORTS_DIR, "report.pdf") c = canvas.Canvas(report_path, pagesize=letter) c.setFont("Helvetica-Bold", 16) c.drawString(200, 770, "Bone Fracture Detection Report") patient_data = [ ["Patient Name", name], ["Age", age], ["Gender", gender], ["Weight", f"{weight} kg"], ["Height", f"{height} cm"], ["Allergies", allergies if allergies else "None"], ["Cause of Injury", cause if cause else "Not Provided"], ["Diagnosis", diagnosed_class], ["Injury Severity", severity] ] # Format and align tables def format_table(data): table = Table(data, colWidths=[270, 270]) table.setStyle(TableStyle([ ('BACKGROUND', (0, 0), (-1, 0), colors.darkblue), ('TEXTCOLOR', (0, 0), (-1, 0), colors.whitesmoke), ('ALIGN', (0, 0), (-1, -1), 'CENTER'), ('FONTNAME', (0, 0), (-1, 0), 'Helvetica-Bold'), ('BOTTOMPADDING', (0, 0), (-1, 0), 12), ('GRID', (0, 0), (-1, -1), 1, colors.black), ('VALIGN', (0, 0), (-1, -1), 'MIDDLE') ])) return table patient_table = format_table(patient_data) patient_table.wrapOn(c, 480, 500) patient_table.drawOn(c, 50, 620) c.drawInlineImage(img_path, 50, 320, width=250, height=250) c.setFont("Helvetica-Bold", 12) c.drawString(120, 290, f"Fractured: {'Yes' if diagnosed_class == 'Fractured' else 'No'}") c.save() # Send report via email send_email_with_attachment(email, report_path, name) return report_path # Define Gradio Interface with gr.Blocks() as app: gr.HTML(html_content) gr.Markdown("## Bone Fracture Detection System") with gr.Row(): name = gr.Textbox(label="Patient Name") age = gr.Number(label="Age") gender = gr.Radio(["Male", "Female", "Other"], label="Gender") with gr.Row(): weight = gr.Number(label="Weight (kg)") height = gr.Number(label="Height (cm)") with gr.Row(): allergies = gr.Textbox(label="Allergies (if any)") cause = gr.Textbox(label="Cause of Injury") email = gr.Textbox(label="Patient Email") with gr.Row(): xray = gr.Image(type="filepath", label="Upload X-ray Image") submit_button = gr.Button("Generate Report") output_file = gr.File(label="Download Report") submit_button.click( generate_report, inputs=[name, age, gender, weight, height, allergies, cause, xray, email], outputs=[output_file], ) if __name__ == "__main__": app.launch()