import gradio as gr import tensorflow as tf import numpy as np import cv2 from tensorflow.keras.preprocessing import image from PIL import Image, ImageDraw from reportlab.lib.pagesizes import letter from reportlab.pdfgen import canvas import os # Load the trained model model = tf.keras.models.load_model("my_keras_model.h5") # Define image size image_size = (224, 224) # Function to detect fracture and get bounding box def detect_fracture(xray): img = Image.open(xray).convert("RGB").resize(image_size) img_array = image.img_to_array(img) / 255.0 img_array = np.expand_dims(img_array, axis=0) prediction = model.predict(img_array)[0][0] # Dummy bounding box for now (assuming model enhancement needed) # Ideally, the model should return bounding box coordinates bbox = (50, 50, 150, 150) if prediction > 0.5 else None # Placeholder return prediction, bbox, img # Function to analyze injury severity def analyze_injury(prediction): if prediction < 0.3: severity = "Mild" treatment = "Rest, pain relievers, and follow-up X-ray." gov_cost = "₹2,000 - ₹5,000" private_cost = "₹10,000 - ₹20,000" elif 0.3 <= prediction < 0.7: severity = "Moderate" treatment = "Plaster cast or splint; possible minor surgery." gov_cost = "₹8,000 - ₹15,000" private_cost = "₹30,000 - ₹60,000" else: severity = "Severe" treatment = "Major surgery with metal implants, extensive physiotherapy." gov_cost = "₹20,000 - ₹50,000" private_cost = "₹1,00,000+" return severity, treatment, gov_cost, private_cost # Function to generate report def generate_report(name, age, gender, xray1, xray2): # Analyze X-ray images prediction1, bbox1, img1 = detect_fracture(xray1) prediction2, bbox2, img2 = detect_fracture(xray2) avg_prediction = (prediction1 + prediction2) / 2 diagnosed_class = "Fractured" if avg_prediction > 0.5 else "Normal" severity, treatment, gov_cost, private_cost = analyze_injury(avg_prediction) # Draw bounding box if fracture is detected if bbox1: draw = ImageDraw.Draw(img1) draw.rectangle(bbox1, outline="red", width=5) if bbox2: draw = ImageDraw.Draw(img2) draw.rectangle(bbox2, outline="red", width=5) # Save modified images img1_path = f"{name}_xray1.png" img2_path = f"{name}_xray2.png" img1.save(img1_path) img2.save(img2_path) # Generate PDF report report_path = f"{name}_fracture_report.pdf" c = canvas.Canvas(report_path, pagesize=letter) c.setFont("Helvetica", 12) c.drawString(100, 750, f"Patient Name: {name}") c.drawString(100, 730, f"Age: {age}") c.drawString(100, 710, f"Gender: {gender}") c.drawString(100, 690, f"Diagnosis: {diagnosed_class}") c.drawString(100, 670, f"Injury Severity: {severity}") c.drawString(100, 650, f"Recommended Treatment: {treatment}") c.drawString(100, 630, f"Estimated Cost (Govt Hospital): {gov_cost}") c.drawString(100, 610, f"Estimated Cost (Private Hospital): {private_cost}") c.save() return report_path, img1_path, img2_path, diagnosed_class, severity, treatment, gov_cost, private_cost # Define Gradio interface interface = gr.Interface( fn=generate_report, inputs=[ gr.Textbox(label="Patient Name"), gr.Number(label="Age"), gr.Radio(["Male", "Female", "Other"], label="Gender"), gr.Image(type="file", label="Upload X-ray Image 1"), gr.Image(type="file", label="Upload X-ray Image 2"), ], outputs=[ gr.File(label="Download Report"), gr.Image(label="X-ray 1 with Fracture Highlight"), gr.Image(label="X-ray 2 with Fracture Highlight"), gr.Textbox(label="Fracture Detected"), gr.Textbox(label="Injury Severity"), gr.Textbox(label="Recommended Treatment"), gr.Textbox(label="Estimated Cost (Govt Hospital)"), gr.Textbox(label="Estimated Cost (Private Hospital)") ], title="Bone Fracture Detection & Medical Report", description="Enter patient details, upload two X-ray images, and generate a detailed medical report with treatment suggestions and cost estimates." ) # Launch the app if __name__ == "__main__": interface.launch()