import os os.environ["CUDA_VISIBLE_DEVICES"] = "-1" # Force TensorFlow to use CPU import gradio as gr import tensorflow as tf import numpy as np from tensorflow.keras.preprocessing import image from PIL import Image from reportlab.lib.pagesizes import letter from reportlab.pdfgen import canvas from reportlab.lib import colors from reportlab.platypus import Table, TableStyle # Load the trained model model = tf.keras.models.load_model("my_keras_model.h5") # Read HTML content from `re.html` with open("templates/re.html", "r", encoding="utf-8") as file: html_content = file.read() # Function to process X-rays and generate a PDF report def generate_report(name, age, gender, allergies, cause, xray1, xray2): image_size = (224, 224) def predict_fracture(xray_path): img = Image.open(xray_path).resize(image_size) img_array = image.img_to_array(img) / 255.0 img_array = np.expand_dims(img_array, axis=0) prediction = model.predict(img_array)[0][0] return prediction # Predict on both X-rays prediction1 = predict_fracture(xray1) prediction2 = predict_fracture(xray2) avg_prediction = (prediction1 + prediction2) / 2 diagnosed_class = "Fractured" if avg_prediction > 0.5 else "Normal" # Injury severity classification severity = "Mild" if avg_prediction < 0.3 else "Moderate" if avg_prediction < 0.7 else "Severe" treatment_details = { "Mild": "Your fracture is classified as **Mild**. It may heal with rest, pain relievers, and a follow-up X-ray. Avoid excessive movement of the affected area.", "Moderate": "Your fracture is classified as **Moderate**. You may require a plaster cast, splint, or minor surgery. Recovery takes **4-8 weeks**.", "Severe": "Your fracture is classified as **Severe**. Surgery with metal implants and extensive physiotherapy is required. Recovery takes **several months** with proper rehabilitation." } treatment = treatment_details[severity] # Estimated cost & duration cost_duration_data = [ ["Hospital Type", "Estimated Cost", "Recovery Time"], ["Government Hospital", f"₹{2000 if severity == 'Mild' else 8000 if severity == 'Moderate' else 20000} - ₹{5000 if severity == 'Mild' else 15000 if severity == 'Moderate' else 50000}", "4-12 weeks"], ["Private Hospital", f"₹{10000 if severity == 'Mild' else 30000 if severity == 'Moderate' else 100000}+", "6 weeks - Several months"] ] # Save X-ray images for report img1 = Image.open(xray1).resize((300, 300)) img2 = Image.open(xray2).resize((300, 300)) img1_path = f"{name}_xray1.png" img2_path = f"{name}_xray2.png" img1.save(img1_path) img2.save(img2_path) # Generate PDF report report_path = f"{name}_fracture_report.pdf" c = canvas.Canvas(report_path, pagesize=letter) c.setFont("Helvetica-Bold", 14) c.drawString(200, 770, "Bone Fracture Detection Report") # Patient details c.setFont("Helvetica", 12) c.drawString(100, 740, f"Patient Name: {name}") c.drawString(100, 720, f"Age: {age}") c.drawString(100, 700, f"Gender: {gender}") c.drawString(100, 680, f"Allergies: {allergies if allergies else 'None'}") c.drawString(100, 660, f"Cause of Injury: {cause if cause else 'Not Provided'}") # Diagnosis c.setFont("Helvetica-Bold", 12) c.drawString(100, 630, "Diagnosis & Treatment Plan:") c.setFont("Helvetica", 11) c.drawString(100, 610, f"Fracture Detected: {diagnosed_class}") c.drawString(100, 590, f"Injury Severity: {severity}") c.setFont("Helvetica", 10) c.drawString(100, 570, f"{treatment}") # Load and insert X-ray images c.drawInlineImage(img1_path, 50, 250, width=250, height=250) c.drawInlineImage(img2_path, 320, 250, width=250, height=250) # Cost estimation table table = Table(cost_duration_data) table.setStyle(TableStyle([ ('BACKGROUND', (0, 0), (-1, 0), colors.grey), ('TEXTCOLOR', (0, 0), (-1, 0), colors.whitesmoke), ('ALIGN', (0, 0), (-1, -1), 'CENTER'), ('FONTNAME', (0, 0), (-1, 0), 'Helvetica-Bold'), ('BOTTOMPADDING', (0, 0), (-1, 0), 12), ('GRID', (0, 0), (-1, -1), 1, colors.black) ])) table.wrapOn(c, 400, 300) table.drawOn(c, 100, 150) c.save() return report_path # Return path for auto-download # Define Gradio Interface with gr.Blocks() as app: gr.HTML(html_content) # Display `re.html` content in Gradio gr.Markdown("## Bone Fracture Detection System") with gr.Row(): name = gr.Textbox(label="Patient Name") age = gr.Number(label="Age") gender = gr.Radio(["Male", "Female", "Other"], label="Gender") with gr.Row(): allergies = gr.Textbox(label="Allergies (if any)") cause = gr.Textbox(label="Cause of Injury") with gr.Row(): xray1 = gr.Image(type="filepath", label="Upload X-ray Image 1") xray2 = gr.Image(type="filepath", label="Upload X-ray Image 2") submit_button = gr.Button("Generate Report") output_file = gr.File(label="Download Report") submit_button.click( generate_report, inputs=[name, age, gender, allergies, cause, xray1, xray2], outputs=[output_file], ) # Launch the Gradio app if __name__ == "__main__": app.launch()