import os os.environ["CUDA_VISIBLE_DEVICES"] = "-1" # Force TensorFlow to use CPU import gradio as gr import tensorflow as tf import numpy as np from tensorflow.keras.preprocessing import image from PIL import Image from reportlab.lib.pagesizes import letter from reportlab.pdfgen import canvas # Load the trained model model = tf.keras.models.load_model("my_keras_model.h5") # Read HTML content from `re.html` with open("templates/re.html", "r", encoding="utf-8") as file: html_content = file.read() # Function to process X-rays and generate a PDF report def generate_report(name, age, gender, xray1, xray2): image_size = (224, 224) def predict_fracture(xray_path): img = Image.open(xray_path).resize(image_size) img_array = image.img_to_array(img) / 255.0 img_array = np.expand_dims(img_array, axis=0) prediction = model.predict(img_array)[0][0] return prediction # Predict on both X-rays prediction1 = predict_fracture(xray1) prediction2 = predict_fracture(xray2) avg_prediction = (prediction1 + prediction2) / 2 diagnosed_class = "Fractured" if avg_prediction > 0.5 else "Normal" # Injury severity classification severity = "Mild" if avg_prediction < 0.3 else "Moderate" if avg_prediction < 0.7 else "Severe" treatment = { "Mild": "Rest, pain relievers, follow-up X-ray.", "Moderate": "Plaster cast, possible minor surgery.", "Severe": "Major surgery, metal implants, physiotherapy." }[severity] gov_cost = {"Mild": "₹2,000 - ₹5,000", "Moderate": "₹8,000 - ₹15,000", "Severe": "₹20,000 - ₹50,000"}[severity] private_cost = {"Mild": "₹10,000 - ₹20,000", "Moderate": "₹30,000 - ₹60,000", "Severe": "₹1,00,000+"}[severity] # Generate PDF report report_path = f"{name}_fracture_report.pdf" c = canvas.Canvas(report_path, pagesize=letter) c.setFont("Helvetica", 12) c.drawString(100, 750, f"Patient Name: {name}") c.drawString(100, 730, f"Age: {age}") c.drawString(100, 710, f"Gender: {gender}") c.drawString(100, 690, f"Diagnosis: {diagnosed_class}") c.drawString(100, 670, f"Injury Severity: {severity}") c.drawString(100, 650, f"Recommended Treatment: {treatment}") c.drawString(100, 630, f"Estimated Cost (Govt Hospital): {gov_cost}") c.drawString(100, 610, f"Estimated Cost (Private Hospital): {private_cost}") c.save() return report_path # Return path for auto-download # Define Gradio Interface with gr.Blocks() as app: gr.HTML(html_content) # Display `re.html` content in Gradio gr.Markdown("## Bone Fracture Detection System") with gr.Row(): name = gr.Textbox(label="Patient Name") age = gr.Number(label="Age") gender = gr.Radio(["Male", "Female", "Other"], label="Gender") with gr.Row(): xray1 = gr.Image(type="filepath", label="Upload X-ray Image 1") xray2 = gr.Image(type="filepath", label="Upload X-ray Image 2") submit_button = gr.Button("Generate Report") output_file = gr.File(label="Download Report") submit_button.click( generate_report, inputs=[name, age, gender, xray1, xray2], outputs=[output_file], ) # Launch the Gradio app if __name__ == "__main__": app.launch()