import os os.environ["CUDA_VISIBLE_DEVICES"] = "-1" # Force TensorFlow to use CPU import gradio as gr import tensorflow as tf import numpy as np from tensorflow.keras.preprocessing import image from PIL import Image from reportlab.lib.pagesizes import letter from reportlab.pdfgen import canvas from reportlab.lib import colors from reportlab.platypus import Table, TableStyle # Load the trained model model = tf.keras.models.load_model("my_keras_model.h5") # Read HTML content from `re.html` with open("templates/re.html", "r", encoding="utf-8") as file: html_content = file.read() # List of sample images sample_images = [f"samples/{img}" for img in os.listdir("samples") if img.endswith((".png", ".jpg", ".jpeg"))] # Function to process X-ray and generate a PDF report def generate_report(name, age, gender, weight, height, allergies, cause, xray): image_size = (224, 224) def predict_fracture(xray_path): img = Image.open(xray_path).resize(image_size) img_array = image.img_to_array(img) / 255.0 img_array = np.expand_dims(img_array, axis=0) prediction = model.predict(img_array)[0][0] return prediction # Predict fracture prediction = predict_fracture(xray) diagnosed_class = "normal" if prediction > 0.5 else "Fractured" # Injury severity classification severity = "Mild" if prediction < 0.3 else "Moderate" if prediction < 0.7 else "Severe" # Treatment details table treatment_data = [ ["Severity Level", "Recommended Treatment", "Recovery Duration"], ["Mild", "Rest, pain relievers, and follow-up X-ray", "4-6 weeks"], ["Moderate", "Plaster cast, minor surgery if needed", "6-10 weeks"], ["Severe", "Major surgery, metal implants, physiotherapy", "Several months"] ] # Estimated cost & duration table cost_duration_data = [ ["Hospital Type", "Estimated Cost", "Recovery Time"], ["Government Hospital", f"₹{2000 if severity == 'Mild' else 8000 if severity == 'Moderate' else 20000} - ₹{5000 if severity == 'Mild' else 15000 if severity == 'Moderate' else 50000}", "4-12 weeks"], ["Private Hospital", f"₹{10000 if severity == 'Mild' else 30000 if severity == 'Moderate' else 100000}+", "6 weeks - Several months"] ] # Save X-ray image for report img = Image.open(xray).resize((300, 300)) img_path = f"{name}_xray.png" img.save(img_path) # Generate PDF report report_path = f"{name}_fracture_report.pdf" c = canvas.Canvas(report_path, pagesize=letter) # Report title c.setFont("Helvetica-Bold", 16) c.drawString(200, 770, "Bone Fracture Detection Report") # Patient details table patient_data = [ ["Patient Name", name], ["Age", age], ["Gender", gender], ["Weight", f"{weight} kg"], ["Height", f"{height} cm"], ["Allergies", allergies if allergies else "None"], ["Cause of Injury", cause if cause else "Not Provided"], ["Diagnosis", diagnosed_class], ["Injury Severity", severity] ] # Format and align tables def format_table(data): table = Table(data, colWidths=[270, 270]) # Set 90% width table.setStyle(TableStyle([ ('BACKGROUND', (0, 0), (-1, 0), colors.darkblue), ('TEXTCOLOR', (0, 0), (-1, 0), colors.whitesmoke), ('ALIGN', (0, 0), (-1, -1), 'CENTER'), ('FONTNAME', (0, 0), (-1, 0), 'Helvetica-Bold'), ('BOTTOMPADDING', (0, 0), (-1, 0), 12), ('GRID', (0, 0), (-1, -1), 1, colors.black), ('VALIGN', (0, 0), (-1, -1), 'MIDDLE') ])) return table # Draw patient details table patient_table = format_table(patient_data) patient_table.wrapOn(c, 480, 500) patient_table.drawOn(c, 50, 620) # Load and insert X-ray image c.drawInlineImage(img_path, 50, 320, width=250, height=250) c.setFont("Helvetica-Bold", 12) c.drawString(120, 290, f"Fractured: {'Yes' if diagnosed_class == 'Fractured' else 'No'}") # Draw treatment and cost tables treatment_table = format_table(treatment_data) treatment_table.wrapOn(c, 480, 200) treatment_table.drawOn(c, 50, 200) cost_table = format_table(cost_duration_data) cost_table.wrapOn(c, 480, 150) cost_table.drawOn(c, 50, 80) c.save() return report_path # Return path for auto-download # Function to select a sample image def use_sample_image(sample_image_path): return sample_image_path # Returns selected sample image filepath # Define Gradio Interface with gr.Blocks() as app: gr.HTML(html_content) # Display `re.html` content in Gradio gr.Markdown("## Bone Fracture Detection System") with gr.Row(): name = gr.Textbox(label="Patient Name") age = gr.Number(label="Age") gender = gr.Radio(["Male", "Female", "Other"], label="Gender") with gr.Row(): weight = gr.Number(label="Weight (kg)") height = gr.Number(label="Height (cm)") with gr.Row(): allergies = gr.Textbox(label="Allergies (if any)") cause = gr.Textbox(label="Cause of Injury") with gr.Row(): xray = gr.Image(type="filepath", label="Upload X-ray Image") with gr.Row(): sample_selector = gr.Dropdown(choices=sample_images, label="Use Sample Image") select_button = gr.Button("Load Sample Image") submit_button = gr.Button("Generate Report") output_file = gr.File(label="Download Report") select_button.click(use_sample_image, inputs=[sample_selector], outputs=[xray]) submit_button.click( generate_report, inputs=[name, age, gender, weight, height, allergies, cause, xray], outputs=[output_file], ) # Launch the Gradio app if __name__ == "__main__": app.launch()