Spaces:
Build error
Build error
import pandas as pd | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
import gradio as gr | |
import io | |
import base64 | |
import tempfile | |
import os | |
from datetime import datetime | |
# --- Matplotlib Plot to Base64 --- | |
def fig_to_base64(fig): | |
"""Converts a Matplotlib figure to a base64 encoded PNG string.""" | |
buf = io.BytesIO() | |
fig.savefig(buf, format='png', bbox_inches='tight') | |
plt.close(fig) # Close the figure to free memory | |
buf.seek(0) | |
img_str = base64.b64encode(buf.read()).decode('utf-8') | |
return f"data:image/png;base64,{img_str}" | |
# --- EDA Helper Functions (Adapted from Colab) --- | |
def get_initial_inspection_html(df): | |
"""Generates HTML for initial data inspection.""" | |
html = "<h2>1. Initial Data Inspection</h2>" | |
# Head | |
html += "<h3>(a) First 5 Rows (Head):</h3>" | |
html += df.head().to_html(classes='table table-striped', border=1) | |
# Tail | |
html += "<h3>(b) Last 5 Rows (Tail):</h3>" | |
html += df.tail().to_html(classes='table table-striped', border=1) | |
# Shape | |
html += "<h3>(c) Dataset Shape:</h3>" | |
html += f"<p>Number of Rows: {df.shape[0]}</p>" | |
html += f"<p>Number of Columns: {df.shape[1]}</p>" | |
# Info | |
html += "<h3>(d) Data Types and Non-Null Counts (Info):</h3>" | |
buffer = io.StringIO() | |
df.info(buf=buffer) | |
info_str = buffer.getvalue() | |
html += f"<pre>{info_str}</pre>" | |
# Column Names | |
html += "<h3>(e) Column Names:</h3>" | |
html += f"<p><code>{list(df.columns)}</code></p>" | |
return html | |
def get_descriptive_stats_html(df): | |
"""Generates HTML for descriptive statistics.""" | |
html = "<h2>2. Descriptive Statistics</h2>" | |
# Numerical | |
html += "<h3>(a) Numerical Columns Statistics:</h3>" | |
try: | |
num_stats = df.describe(include=np.number) | |
if not num_stats.empty: | |
html += num_stats.to_html(classes='table table-striped', border=1, float_format='%.2f') | |
else: | |
html += "<p>No numerical columns found.</p>" | |
except Exception as e: | |
html += f"<p>Error generating numerical stats: {e}</p>" | |
# Categorical | |
html += "<h3>(b) Categorical/Object Columns Statistics:</h3>" | |
try: | |
cat_stats = df.describe(include=['object', 'category']) | |
if not cat_stats.empty: | |
html += cat_stats.to_html(classes='table table-striped', border=1) | |
else: | |
html += "<p>No categorical/object columns found.</p>" | |
except Exception as e: | |
html += f"<p>Error generating categorical stats: {e}</p>" | |
return html | |
def identify_column_types_html(df): | |
"""Generates HTML listing identified column types.""" | |
html = "<h2>3. Identifying Column Types</h2>" | |
numerical_cols = df.select_dtypes(include=np.number).columns.tolist() | |
categorical_cols = df.select_dtypes(include=['object', 'category']).columns.tolist() | |
datetime_cols = df.select_dtypes(include=['datetime', 'datetime64']).columns.tolist() | |
boolean_cols = df.select_dtypes(include=['bool']).columns.tolist() | |
other_cols = df.columns.difference(numerical_cols + categorical_cols + datetime_cols + boolean_cols).tolist() | |
html += f"<p><b>Numerical Columns ({len(numerical_cols)}):</b> <code>{numerical_cols}</code></p>" | |
html += f"<p><b>Categorical Columns ({len(categorical_cols)}):</b> <code>{categorical_cols}</code></p>" | |
html += f"<p><b>DateTime Columns ({len(datetime_cols)}):</b> <code>{datetime_cols}</code></p>" | |
html += f"<p><b>Boolean Columns ({len(boolean_cols)}):</b> <code>{boolean_cols}</code></p>" | |
if other_cols: | |
html += f"<p><b>Other/Unclassified Columns ({len(other_cols)}):</b> <code>{other_cols}</code></p>" | |
# Store for later use (return them) | |
return html, numerical_cols, categorical_cols # Return lists as well | |
def analyze_missing_values_html(df): | |
"""Generates HTML for missing value analysis.""" | |
html = "<h2>4. Missing Value Analysis</h2>" | |
missing_values = df.isnull().sum() | |
missing_percent = (missing_values / len(df)) * 100 | |
missing_table = pd.concat([missing_values, missing_percent], axis=1, keys=['Missing Count', 'Missing (%)']) | |
missing_table = missing_table[missing_table['Missing Count'] > 0].sort_values('Missing (%)', ascending=False) | |
if not missing_table.empty: | |
html += "<h3>(a) Columns with Missing Values:</h3>" | |
html += missing_table.to_html(classes='table table-striped', border=1, float_format='%.2f') | |
# Heatmap | |
html += "<h3>(b) Missing Values Heatmap:</h3>" | |
try: | |
fig, ax = plt.subplots(figsize=(15, 7)) | |
sns.heatmap(df.isnull(), cbar=False, cmap='viridis', ax=ax) | |
ax.set_title('Heatmap of Missing Values per Column') | |
img_str = fig_to_base64(fig) | |
html += f'<img src="{img_str}" alt="Missing Values Heatmap"><br>' | |
html += "<p><i>Consider strategies like imputation or deletion based on the results.</i></p>" | |
except Exception as e: | |
html += f"<p>Could not generate missing value heatmap. Error: {e}</p>" | |
else: | |
html += "<p>No missing values found in the dataset. Great!</p>" | |
return html | |
def analyze_univariate_numerical_html(df, numerical_cols): | |
"""Generates HTML for univariate analysis of numerical columns.""" | |
html = "<h2>5. Univariate Analysis (Numerical Columns)</h2>" | |
html += "<p><i>Analyzing distributions of individual numerical features using Histograms and Box Plots.</i></p>" | |
if not numerical_cols: | |
html += "<p>No numerical columns found to analyze.</p>" | |
return html | |
for col in numerical_cols: | |
html += f"<h3>Analyzing: '{col}'</h3>" | |
try: | |
# Create subplots | |
fig, axes = plt.subplots(1, 2, figsize=(16, 5)) # 1 row, 2 columns | |
# Plot Histogram | |
sns.histplot(df[col], kde=True, bins=30, ax=axes[0]) | |
axes[0].set_title(f'Histogram of {col}') | |
axes[0].set_xlabel(col) | |
axes[0].set_ylabel('Frequency') | |
# Plot Box Plot | |
sns.boxplot(y=df[col], ax=axes[1]) | |
axes[1].set_title(f'Box Plot of {col}') | |
axes[1].set_ylabel(col) | |
plt.tight_layout() | |
img_str = fig_to_base64(fig) | |
html += f'<img src="{img_str}" alt="Plots for {col}"><br>' | |
# Skewness | |
skewness = df[col].skew() | |
html += f"<p><b>Skewness:</b> {skewness:.2f} " | |
if skewness > 0.5: html += "(Moderately Right-Skewed)" | |
elif skewness < -0.5: html += "(Moderately Left-Skewed)" | |
else: html += "(Approximately Symmetric)" | |
html += "</p><hr>" | |
except Exception as e: | |
html += f"<p>Could not generate plots for {col}. Error: {e}</p><hr>" | |
return html | |
def analyze_univariate_categorical_html(df, categorical_cols): | |
"""Generates HTML for univariate analysis of categorical columns.""" | |
html = "<h2>6. Univariate Analysis (Categorical Columns)</h2>" | |
html += "<p><i>Analyzing frequency distributions of individual categorical features using Count Plots.</i></p>" | |
if not categorical_cols: | |
html += "<p>No categorical/object columns found to analyze.</p>" | |
return html | |
plot_threshold = 50 # Max unique values for plotting | |
for col in categorical_cols: | |
html += f"<h3>Analyzing: '{col}'</h3>" | |
try: | |
unique_count = df[col].nunique() | |
html += f"<p><b>Number of Unique Values:</b> {unique_count}</p>" | |
if unique_count == 0: | |
html += "<p><i>Column has no values.</i></p><hr>" | |
continue | |
elif unique_count > plot_threshold: | |
html += f"<p><i>Skipping plot as unique value count ({unique_count}) exceeds threshold ({plot_threshold}). Showing Top 15 value counts instead.</i></p>" | |
top_15_counts = df[col].value_counts().head(15) | |
html += "<pre>" + top_15_counts.to_string() + "</pre><hr>" | |
else: | |
# Plot Count Plot | |
fig, ax = plt.subplots(figsize=(10, max(5, unique_count * 0.3))) # Adjust height | |
plot_order = df[col].value_counts().index | |
sns.countplot(y=df[col], order=plot_order, palette='viridis', ax=ax) | |
ax.set_title(f'Frequency Count of {col}') | |
ax.set_xlabel('Count') | |
ax.set_ylabel(col) | |
plt.tight_layout() | |
img_str = fig_to_base64(fig) | |
html += f'<img src="{img_str}" alt="Count Plot for {col}"><hr>' | |
except Exception as e: | |
html += f"<p>Could not generate plot/counts for {col}. Error: {e}</p><hr>" | |
return html | |
def analyze_bivariate_numerical_html(df, numerical_cols): | |
"""Generates HTML for bivariate analysis of numerical columns.""" | |
html = "<h2>7. Bivariate Analysis (Numerical vs. Numerical)</h2>" | |
html += "<p><i>Analyzing relationships between pairs of numerical features using Correlation Matrix and Pair Plots.</i></p>" | |
if len(numerical_cols) < 2: | |
html += "<p>Need at least two numerical columns for this analysis.</p>" | |
return html | |
# Correlation Heatmap | |
html += "<h3>(a) Correlation Matrix Heatmap:</h3>" | |
try: | |
correlation_matrix = df[numerical_cols].corr() | |
fig, ax = plt.subplots(figsize=(12, 10)) | |
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f", linewidths=.5, ax=ax) | |
ax.set_title('Correlation Matrix of Numerical Features') | |
img_str = fig_to_base64(fig) | |
html += f'<img src="{img_str}" alt="Correlation Matrix"><br>' | |
html += "<p><i>Interpretation: Values close to +1 indicate strong positive linear correlation, close to -1 indicate strong negative linear correlation, close to 0 indicate weak or no linear correlation.</i></p>" | |
except Exception as e: | |
html += f"<p>Could not generate correlation heatmap. Error: {e}</p>" | |
# Pair Plot | |
pairplot_threshold = 7 # Limit features for pairplot | |
html += f"<h3>(b) Pair Plot (Threshold: {pairplot_threshold} features):</h3>" | |
if len(numerical_cols) <= pairplot_threshold: | |
html += f"<p><i>Generating Pair Plot for {len(numerical_cols)} numerical features... (May take a moment)</i></p>" | |
try: | |
pair_plot_fig = sns.pairplot(df[numerical_cols], diag_kind='kde') | |
pair_plot_fig.fig.suptitle('Pair Plot of Numerical Features', y=1.02) # Adjust title position | |
# Convert the PairGrid object's figure to base64 | |
img_str = fig_to_base64(pair_plot_fig.fig) | |
html += f'<img src="{img_str}" alt="Pair Plot"><br>' | |
except Exception as e: | |
html += f"<p>Could not generate pair plot. Error: {e}</p>" | |
html += "<p><i>Pairplots can sometimes fail with certain data types or distributions, or if memory is limited.</i></p>" | |
else: | |
html += f"<p><i>Skipping Pair Plot because the number of numerical features ({len(numerical_cols)}) exceeds the threshold ({pairplot_threshold}).</i></p>" | |
return html | |
def analyze_bivariate_num_cat_html(df, numerical_cols, categorical_cols): | |
"""Generates HTML for bivariate analysis of numerical vs. categorical columns.""" | |
html = "<h2>8. Bivariate Analysis (Numerical vs. Categorical)</h2>" | |
html += "<p><i>Analyzing distributions of numerical features across different categories using Box Plots.</i></p>" | |
if not numerical_cols or not categorical_cols: | |
html += "<p>Need both numerical and categorical columns for this analysis.</p>" | |
return html | |
cat_nunique_threshold = 20 | |
cats_to_analyze = [col for col in categorical_cols if df[col].nunique() <= cat_nunique_threshold] | |
if not cats_to_analyze: | |
html += f"<p>No categorical columns with a reasonable number of unique values (<= {cat_nunique_threshold}) found for plotting against numerical features.</p>" | |
return html | |
html += f"<p><i>Analyzing numerical columns against these categorical columns (max {cat_nunique_threshold} unique values): <code>{cats_to_analyze}</code></i></p>" | |
for num_col in numerical_cols: | |
for cat_col in cats_to_analyze: | |
html += f"<h3>Analyzing: '{num_col}' vs '{cat_col}'</h3>" | |
try: | |
# Check if category column has data | |
if df[cat_col].isnull().all() or df[cat_col].nunique() == 0: | |
html += f"<p><i>Skipping plot: Categorical column '{cat_col}' has no valid data or only one unique value after dropping NaNs.</i></p><hr>" | |
continue | |
fig, ax = plt.subplots(figsize=(12, 6)) | |
sns.boxplot(x=df[cat_col], y=df[num_col], palette='viridis', ax=ax, order=sorted(df[cat_col].dropna().unique())) # Added order and dropna | |
ax.set_title(f'Box Plot of {num_col} by {cat_col}') | |
ax.set_xlabel(cat_col) | |
ax.set_ylabel(num_col) | |
# Rotate x-axis labels if they are long or numerous | |
if df[cat_col].nunique() > 5: | |
plt.xticks(rotation=45, ha='right') | |
plt.tight_layout() | |
img_str = fig_to_base64(fig) | |
html += f'<img src="{img_str}" alt="Box plot of {num_col} by {cat_col}"><hr>' | |
except Exception as e: | |
html += f"<p>Could not generate box plot for '{num_col}' vs '{cat_col}'. Error: {e}</p><hr>" | |
return html | |
def get_analysis_summary_html(df, missing_table_html): | |
"""Generates HTML for the summary section.""" | |
html = "<h2>9. Analysis Summary & Next Steps</h2>" | |
html += "<p>This automated analysis provided a first look at the dataset's structure, content, distributions, and basic relationships.</p>" | |
html += "<h3>Key Observations (Auto-Generated Summary):</h3>" | |
html += f"<ul><li>The dataset has <b>{df.shape[0]}</b> rows and <b>{df.shape[1]}</b> columns.</li>" | |
# Add more sophisticated summary points based on analysis if desired | |
if "Columns with Missing Values" in missing_table_html: | |
html += "<li>Missing values were detected (see Section 4 for details).</li>" | |
else: | |
html += "<li>No missing values were found.</li>" | |
html += "<li>Review the plots in Sections 5-8 for insights into distributions and relationships.</li>" | |
html += "<li><i>(Note: This is a basic summary. Customize with specific findings based on the generated report.)</i></li></ul>" | |
html += "<h3>Potential Next Steps:</h3>" | |
html += "<ol>" | |
html += "<li><b>Data Cleaning:</b> Address missing values (imputation/deletion), correct data types if needed, handle outliers (if appropriate).</li>" | |
html += "<li><b>Feature Engineering:</b> Create new features from existing ones (e.g., extracting date parts, combining categories).</li>" | |
html += "<li><b>Deeper Analysis:</b> Explore relationships further (statistical tests, different plots, multivariate analysis).</li>" | |
html += "<li><b>Domain-Specific Analysis:</b> Apply subject matter expertise for targeted questions.</li>" | |
html += "<li><b>Modeling:</b> Prepare data and build machine learning models if applicable.</li>" | |
html += "</ol>" | |
return html | |
def get_bonus_guide_html(): | |
"""Generates HTML for the bonus guide.""" | |
html = """ | |
<h2>Bonus: How to Understand & Read Any Dataset</h2> | |
<p>Approaching a new dataset systematically:</p> | |
<ol> | |
<li><strong>Understand the Context:</strong> Source, purpose, data dictionary, timeframe.</li> | |
<li><strong>Load and Get a First Look:</strong> Use tools like pandas, check dimensions (`.shape`), peek at data (`.head()`, `.tail()`).</li> | |
<li><strong>Examine Metadata and Structure:</strong> Check column names (`.columns`), data types (`.info()`), memory usage. Correct types if necessary.</li> | |
<li><strong>Summarize the Data:</strong> Use `.describe()` for numerical (mean, median, std, min/max, quartiles) and categorical (unique count, top value, frequency) summaries. Check `.value_counts()` for specific categories.</li> | |
<li><strong>Handle Missing Data:</strong> Identify (`.isnull().sum()`) and quantify missing values. Decide on a strategy (deletion, imputation).</li> | |
<li><strong>Visualize (EDA):</strong> | |
<ul> | |
<li><em>Univariate:</em> Histograms, density plots, box plots (numerical); Count plots (categorical).</li> | |
<li><em>Bivariate:</em> Scatter plots, correlation matrix/heatmap (numerical vs. numerical); Box plots, violin plots (numerical vs. categorical); Crosstabs, stacked bars (categorical vs. categorical).</li> | |
<li><em>Multivariate:</em> Pair plots, faceting.</li> | |
</ul> | |
</li> | |
<li><strong>Ask Questions:</strong> Formulate specific questions based on context and initial findings.</li> | |
<li><strong>Iterate and Document:</strong> Data understanding is iterative. Document findings and decisions.</li> | |
</ol> | |
""" | |
return html | |
# --- Main Gradio Function --- | |
def generate_eda_report(uploaded_file): | |
""" | |
Main function called by Gradio. Takes an uploaded file, performs EDA, | |
and returns the path to a generated HTML report file. | |
""" | |
start_time = datetime.now() | |
if uploaded_file is None: | |
raise gr.Error("No file uploaded! Please upload a CSV file.") | |
try: | |
# Set visualization styles globally for the run | |
sns.set(style="whitegrid") | |
plt.rcParams['figure.figsize'] = (12, 6) | |
pd.set_option('display.max_columns', 50) | |
pd.set_option('display.float_format', lambda x: '%.2f' % x) | |
# Check file size (example: 100MB limit) | |
file_size_mb = os.path.getsize(uploaded_file.name) / (1024 * 1024) | |
if file_size_mb > 100: | |
raise gr.Error(f"File size ({file_size_mb:.2f} MB) exceeds the 100 MB limit.") | |
# Read the CSV file | |
# Use the temporary path provided by Gradio's File component | |
df = pd.read_csv(uploaded_file.name) | |
# Start building the HTML report | |
html_content = """ | |
<!DOCTYPE html> | |
<html lang="en"> | |
<head> | |
<meta charset="UTF-8"> | |
<meta name="viewport" content="width=device-width, initial-scale=1.0"> | |
<title>Automated EDA Report</title> | |
<style> | |
body { font-family: sans-serif; margin: 20px; } | |
h1, h2, h3 { color: #333; } | |
h1 { text-align: center; border-bottom: 2px solid #eee; padding-bottom: 10px; } | |
h2 { border-bottom: 1px solid #eee; padding-bottom: 5px; margin-top: 30px; } | |
h3 { margin-top: 20px; color: #555; } | |
table { border-collapse: collapse; width: auto; margin-top: 15px; margin-bottom: 15px; } | |
th, td { border: 1px solid #ddd; padding: 8px; text-align: left; } | |
th { background-color: #f2f2f2; } | |
tr:nth-child(even) { background-color: #f9f9f9; } | |
pre { background-color: #f5f5f5; padding: 10px; border: 1px solid #ccc; overflow-x: auto; } | |
code { background-color: #eee; padding: 2px 4px; border-radius: 3px; } | |
img { max-width: 100%; height: auto; display: block; margin: 15px auto; border: 1px solid #ddd; } | |
hr { border: 0; height: 1px; background: #ddd; margin: 30px 0; } | |
</style> | |
</head> | |
<body> | |
<h1>π Automated Data Explorer & Visualizer Report π</h1> | |
""" | |
report_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S") | |
html_content += f"<p style='text-align:center;'><i>Report generated on: {report_time}</i></p>" | |
html_content += f"<p style='text-align:center;'><i>Input file: {os.path.basename(uploaded_file.name)}</i></p>" | |
# --- Run EDA Steps --- | |
# 1. Initial Inspection | |
html_content += get_initial_inspection_html(df) | |
html_content += "<hr>" | |
# 2. Descriptive Statistics | |
html_content += get_descriptive_stats_html(df) | |
html_content += "<hr>" | |
# 3. Identify Column Types | |
col_types_html, num_cols, cat_cols = identify_column_types_html(df) | |
html_content += col_types_html | |
html_content += "<hr>" | |
# 4. Missing Values | |
missing_html = analyze_missing_values_html(df) | |
html_content += missing_html | |
html_content += "<hr>" | |
# 5. Univariate Numerical | |
html_content += analyze_univariate_numerical_html(df, num_cols) | |
html_content += "<hr>" | |
# 6. Univariate Categorical | |
html_content += analyze_univariate_categorical_html(df, cat_cols) | |
html_content += "<hr>" | |
# 7. Bivariate Numerical vs Numerical | |
html_content += analyze_bivariate_numerical_html(df, num_cols) | |
html_content += "<hr>" | |
# 8. Bivariate Numerical vs Categorical | |
html_content += analyze_bivariate_num_cat_html(df, num_cols, cat_cols) | |
html_content += "<hr>" | |
# 9. Summary | |
html_content += get_analysis_summary_html(df, missing_html) # Pass missing_html to check if missing values were found | |
html_content += "<hr>" | |
# 10. Bonus Guide | |
html_content += get_bonus_guide_html() | |
# --- Finalize HTML --- | |
html_content += f"<p style='text-align:center; margin-top: 30px;'><i>--- End of Report ---</i></p>" | |
end_time = datetime.now() | |
duration = end_time - start_time | |
html_content += f"<p style='text-align:center; font-size: small; color: grey;'><i>Analysis completed in {duration.total_seconds():.2f} seconds.</i></p>" | |
html_content += """ | |
</body> | |
</html> | |
""" | |
# Save HTML content to a temporary file | |
# Use tempfile for better cross-platform compatibility and automatic cleanup | |
with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix=".html", encoding='utf-8') as temp_file: | |
temp_file.write(html_content) | |
report_path = temp_file.name # Get the path of the temp file | |
# Return the path to the generated HTML file for Gradio output | |
return report_path | |
except pd.errors.ParserError: | |
raise gr.Error("Error parsing CSV file. Please ensure it is a valid CSV format and delimiter is correctly inferred (usually comma).") | |
except FileNotFoundError: | |
raise gr.Error("Uploaded file not found. Please try uploading again.") | |
except ValueError as ve: # Catch specific value errors like Colab's upload error | |
raise gr.Error(f"Value Error: {ve}") | |
except Exception as e: | |
# Generic error catch - useful for debugging | |
import traceback | |
tb_str = traceback.format_exc() | |
print(f"An unexpected error occurred: {e}\n{tb_str}") # Log to console | |
raise gr.Error(f"An unexpected error occurred during analysis: {e}. Check console logs if running locally.") | |
# --- Gradio Interface Setup --- | |
description = """ | |
**Effortless Dataset Insights π** | |
Upload your CSV dataset (max 100MB) and get an automated Exploratory Data Analysis (EDA) report. | |
The report includes: | |
1. Basic Info (Shape, Data Types, Head/Tail) | |
2. Descriptive Statistics | |
3. Missing Value Analysis & Heatmap | |
4. Univariate Analysis (Histograms, Box Plots, Count Plots) | |
5. Bivariate Analysis (Correlation Heatmap, Pair Plot [small datasets], Box Plots by Category) | |
6. Summary & Next Steps Guide | |
The output will be an HTML file that you can download and view in your browser. | |
""" | |
iface = gr.Interface( | |
fn=generate_eda_report, | |
inputs=gr.File(label="Upload CSV Dataset", file_types=[".csv"]), | |
outputs=gr.File(label="Download EDA Report (.html)"), | |
title="Effortless Dataset Insights", | |
description=description, | |
allow_flagging="never", | |
examples=[ | |
# You can add paths to example CSV files here if you host them somewhere | |
# e.g., ["./examples/sample_data.csv"] | |
# Ensure these files exist if you uncomment this | |
], | |
theme=gr.themes.Soft() # Optional: Apply a theme | |
) | |
# --- Launch the App --- | |
if __name__ == "__main__": | |
iface.launch() | |