Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,378 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, File, UploadFile, Form
|
2 |
+
from fastapi.responses import HTMLResponse, Response
|
3 |
+
from transformers import pipeline
|
4 |
+
from PIL import Image, ImageDraw
|
5 |
+
import numpy as np
|
6 |
+
import io
|
7 |
+
import uvicorn
|
8 |
+
import base64
|
9 |
+
from reportlab.lib.pagesizes import letter
|
10 |
+
from reportlab.platypus import SimpleDocTemplate, Image as ReportLabImage, Paragraph, Spacer
|
11 |
+
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
|
12 |
+
from reportlab.lib.colors import red, blue, black
|
13 |
+
from reportlab.lib.units import inch
|
14 |
+
|
15 |
+
app = FastAPI()
|
16 |
+
|
17 |
+
# Chargement des modèles
|
18 |
+
def load_models():
|
19 |
+
return {
|
20 |
+
"KnochenAuge": pipeline("object-detection", model="D3STRON/bone-fracture-detr"),
|
21 |
+
"KnochenWächter": pipeline("image-classification", model="Heem2/bone-fracture-detection-using-xray"),
|
22 |
+
"RöntgenMeister": pipeline("image-classification",
|
23 |
+
model="nandodeomkar/autotrain-fracture-detection-using-google-vit-base-patch-16-54382127388")
|
24 |
+
}
|
25 |
+
|
26 |
+
models = load_models()
|
27 |
+
|
28 |
+
def translate_label(label):
|
29 |
+
translations = {
|
30 |
+
"fracture": "Knochenbruch",
|
31 |
+
"no fracture": "Kein Knochenbruch",
|
32 |
+
"normal": "Normal",
|
33 |
+
"abnormal": "Auffällig",
|
34 |
+
"F1": "Knochenbruch",
|
35 |
+
"NF": "Kein Knochenbruch"
|
36 |
+
}
|
37 |
+
return translations.get(label.lower(), label)
|
38 |
+
|
39 |
+
def create_heatmap_overlay(image, box, score):
|
40 |
+
overlay = Image.new('RGBA', image.size, (0, 0, 0, 0))
|
41 |
+
draw = ImageDraw.Draw(overlay)
|
42 |
+
|
43 |
+
x1, y1 = box['xmin'], box['ymin']
|
44 |
+
x2, y2 = box['xmax'], box['ymax']
|
45 |
+
|
46 |
+
if score > 0.8:
|
47 |
+
fill_color = (255, 0, 0, 100)
|
48 |
+
border_color = (255, 0, 0, 255)
|
49 |
+
elif score > 0.6:
|
50 |
+
fill_color = (255, 165, 0, 100)
|
51 |
+
border_color = (255, 165, 0, 255)
|
52 |
+
else:
|
53 |
+
fill_color = (255, 255, 0, 100)
|
54 |
+
border_color = (255, 255, 0, 255)
|
55 |
+
|
56 |
+
draw.rectangle([x1, y1, x2, y2], fill=fill_color)
|
57 |
+
draw.rectangle([x1, y1, x2, y2], outline=border_color, width=2)
|
58 |
+
|
59 |
+
return overlay
|
60 |
+
|
61 |
+
def draw_boxes(image, predictions):
|
62 |
+
result_image = image.copy().convert('RGBA')
|
63 |
+
|
64 |
+
for pred in predictions:
|
65 |
+
box = pred['box']
|
66 |
+
score = pred['score']
|
67 |
+
|
68 |
+
overlay = create_heatmap_overlay(image, box, score)
|
69 |
+
result_image = Image.alpha_composite(result_image, overlay)
|
70 |
+
|
71 |
+
draw = ImageDraw.Draw(result_image)
|
72 |
+
temp = 36.5 + (score * 2.5)
|
73 |
+
label = f"{translate_label(pred['label'])} ({score:.1%} • {temp:.1f}°C)"
|
74 |
+
|
75 |
+
text_bbox = draw.textbbox((box['xmin'], box['ymin']-20), label)
|
76 |
+
draw.rectangle(text_bbox, fill=(0, 0, 0, 180))
|
77 |
+
|
78 |
+
draw.text(
|
79 |
+
(box['xmin'], box['ymin']-20),
|
80 |
+
label,
|
81 |
+
fill=(255, 255, 255, 255)
|
82 |
+
)
|
83 |
+
|
84 |
+
return result_image
|
85 |
+
|
86 |
+
def image_to_base64(image):
|
87 |
+
buffered = io.BytesIO()
|
88 |
+
image.save(buffered, format="PNG")
|
89 |
+
img_str = base64.b64encode(buffered.getvalue()).decode()
|
90 |
+
return f"data:image/png;base64,{img_str}"
|
91 |
+
|
92 |
+
def generate_report(patient_name, analyzed_image_bytes, prediction, confidence):
|
93 |
+
buffer = io.BytesIO()
|
94 |
+
doc = SimpleDocTemplate(buffer, pagesize=letter)
|
95 |
+
styles = getSampleStyleSheet()
|
96 |
+
title_style = ParagraphStyle(
|
97 |
+
name='TitleStyle',
|
98 |
+
parent=styles['Normal'],
|
99 |
+
fontSize=16,
|
100 |
+
textColor=blue,
|
101 |
+
alignment=1 # Center alignment
|
102 |
+
)
|
103 |
+
heading_style = ParagraphStyle(
|
104 |
+
name='HeadingStyle',
|
105 |
+
parent=styles['Normal'],
|
106 |
+
fontSize=12,
|
107 |
+
textColor=red
|
108 |
+
)
|
109 |
+
prediction_style = ParagraphStyle(
|
110 |
+
name='PredictionStyle',
|
111 |
+
parent=styles['Normal'],
|
112 |
+
fontSize=14,
|
113 |
+
alignment=1
|
114 |
+
)
|
115 |
+
|
116 |
+
story = []
|
117 |
+
|
118 |
+
# Hospital Name
|
119 |
+
hospital_name = Paragraph("youesh hospital , mumbai ( west )", title_style)
|
120 |
+
story.append(hospital_name)
|
121 |
+
story.append(Spacer(1, 0.2*inch))
|
122 |
+
|
123 |
+
# Patient Greeting
|
124 |
+
greeting = Paragraph(f"hello , {patient_name} thank you for using our services this is your radiology report", heading_style)
|
125 |
+
story.append(greeting)
|
126 |
+
story.append(Spacer(1, 0.2*inch))
|
127 |
+
|
128 |
+
# Horizontal Line
|
129 |
+
story.append(Paragraph("<hr/>", styles['Normal']))
|
130 |
+
story.append(Spacer(1, 0.2*inch))
|
131 |
+
|
132 |
+
# Analyzed Image
|
133 |
+
img = ReportLabImage(io.BytesIO(analyzed_image_bytes), width=400, height=400, kind='direct')
|
134 |
+
story.append(img)
|
135 |
+
story.append(Spacer(1, 0.2*inch))
|
136 |
+
|
137 |
+
# Prediction
|
138 |
+
prediction_text = f"<b>Prediction:</b> {prediction.capitalize()}"
|
139 |
+
confidence_text = f"<b>Confidence:</b> {'Yes' if confidence > 0.6 else 'No'}"
|
140 |
+
story.append(Paragraph(prediction_text, prediction_style))
|
141 |
+
story.append(Paragraph(confidence_text, prediction_style))
|
142 |
+
|
143 |
+
doc.build(story)
|
144 |
+
buffer.seek(0)
|
145 |
+
return buffer.getvalue()
|
146 |
+
|
147 |
+
COMMON_STYLES = """
|
148 |
+
body {
|
149 |
+
font-family: system-ui, -apple-system, sans-serif;
|
150 |
+
background: #f0f2f5;
|
151 |
+
margin: 0;
|
152 |
+
padding: 20px;
|
153 |
+
color: #1a1a1a;
|
154 |
+
}
|
155 |
+
::-webkit-scrollbar {
|
156 |
+
width: 8px;
|
157 |
+
height: 8px;
|
158 |
+
}
|
159 |
+
|
160 |
+
::-webkit-scrollbar-track {
|
161 |
+
background: transparent;
|
162 |
+
}
|
163 |
+
|
164 |
+
::-webkit-scrollbar-thumb {
|
165 |
+
background-color: rgba(156, 163, 175, 0.5);
|
166 |
+
border-radius: 4px;
|
167 |
+
}
|
168 |
+
|
169 |
+
.container {
|
170 |
+
max-width: 1200px;
|
171 |
+
margin: 0 auto;
|
172 |
+
background: white;
|
173 |
+
padding: 20px;
|
174 |
+
border-radius: 10px;
|
175 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
176 |
+
}
|
177 |
+
.button {
|
178 |
+
background: #404040; /* Changed button background color */
|
179 |
+
color: white;
|
180 |
+
border: none;
|
181 |
+
padding: 12px 30px;
|
182 |
+
border-radius: 8px;
|
183 |
+
cursor: pointer;
|
184 |
+
font-size: 1.1em;
|
185 |
+
transition: all 0.3s ease;
|
186 |
+
position: relative;
|
187 |
+
}
|
188 |
+
.button:hover {
|
189 |
+
background: #555;
|
190 |
+
}
|
191 |
+
@keyframes progress {
|
192 |
+
0% { width: 0; }
|
193 |
+
100% { width: 100%; }
|
194 |
+
}
|
195 |
+
.button-progress {
|
196 |
+
position: absolute;
|
197 |
+
bottom: 0;
|
198 |
+
left: 0;
|
199 |
+
height: 4px;
|
200 |
+
background: rgba(255, 255, 255, 0.5);
|
201 |
+
width: 0;
|
202 |
+
}
|
203 |
+
.button:active .button-progress {
|
204 |
+
animation: progress 2s linear forwards;
|
205 |
+
}
|
206 |
+
img {
|
207 |
+
max-width: 100%;
|
208 |
+
height: auto;
|
209 |
+
border-radius: 8px;
|
210 |
+
}
|
211 |
+
@keyframes blink {
|
212 |
+
0% { opacity: 1; }
|
213 |
+
50% { opacity: 0; }
|
214 |
+
100% { opacity: 1; }
|
215 |
+
}
|
216 |
+
#loading {
|
217 |
+
display: none;
|
218 |
+
color: white;
|
219 |
+
margin-top: 10px;
|
220 |
+
animation: blink 1s infinite;
|
221 |
+
text-align: center;
|
222 |
+
}
|
223 |
+
"""
|
224 |
+
|
225 |
+
@app.get("/", response_class=HTMLResponse)
|
226 |
+
async def main():
|
227 |
+
content = f"""
|
228 |
+
<!DOCTYPE html>
|
229 |
+
<html>
|
230 |
+
<head>
|
231 |
+
<title>Fraktur Detektion</title>
|
232 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
233 |
+
<style>
|
234 |
+
{COMMON_STYLES}
|
235 |
+
|
236 |
+
.input-group {
|
237 |
+
margin-bottom: 20px;
|
238 |
+
}
|
239 |
+
.input-group label {
|
240 |
+
display: block;
|
241 |
+
margin-bottom: 5px;
|
242 |
+
color: #404040;
|
243 |
+
font-weight: bold;
|
244 |
+
}
|
245 |
+
.input-group input[type="text"] {
|
246 |
+
width: calc(100% - 22px);
|
247 |
+
padding: 10px;
|
248 |
+
border: 1px solid #ccc;
|
249 |
+
border-radius: 4px;
|
250 |
+
font-size: 1em;
|
251 |
+
}
|
252 |
+
|
253 |
+
.upload-section {
|
254 |
+
background: #2d2d2d;
|
255 |
+
padding: 40px;
|
256 |
+
border-radius: 12px;
|
257 |
+
margin: 20px 0;
|
258 |
+
text-align: center;
|
259 |
+
border: 2px dashed #404040;
|
260 |
+
transition: all 0.3s ease;
|
261 |
+
color: white;
|
262 |
+
}
|
263 |
+
.upload-section:hover {
|
264 |
+
border-color: #555;
|
265 |
+
}
|
266 |
+
input[type="file"] {
|
267 |
+
font-size: 1.1em;
|
268 |
+
margin: 20px 0;
|
269 |
+
color: white;
|
270 |
+
}
|
271 |
+
input[type="file"]::file-selector-button {
|
272 |
+
font-size: 1em;
|
273 |
+
padding: 10px 20px;
|
274 |
+
border-radius: 8px;
|
275 |
+
border: 1px solid #404040;
|
276 |
+
background: #2d2d2d;
|
277 |
+
color: white;
|
278 |
+
transition: all 0.3s ease;
|
279 |
+
cursor: pointer;
|
280 |
+
}
|
281 |
+
input[type="file"]::file-selector-button:hover {
|
282 |
+
background: #404040;
|
283 |
+
}
|
284 |
+
</style>
|
285 |
+
</head>
|
286 |
+
<body>
|
287 |
+
<div class="container">
|
288 |
+
<form action="/analyze" method="post" enctype="multipart/form-data" onsubmit="document.getElementById('loading').style.display = 'block';">
|
289 |
+
<div class="input-group">
|
290 |
+
<label for="name">Name:</label>
|
291 |
+
<input type="text" id="name" name="name" required>
|
292 |
+
</div>
|
293 |
+
<div class="upload-section">
|
294 |
+
<div>
|
295 |
+
<input type="file" name="file" accept="image/*" required>
|
296 |
+
</div>
|
297 |
+
<button type="submit" class="button">
|
298 |
+
Generate Report
|
299 |
+
<div class="button-progress"></div>
|
300 |
+
</button>
|
301 |
+
<div id="loading">Loading...</div>
|
302 |
+
</div>
|
303 |
+
</form>
|
304 |
+
</div>
|
305 |
+
</body>
|
306 |
+
</html>
|
307 |
+
"""
|
308 |
+
return content
|
309 |
+
|
310 |
+
@app.post("/analyze", response_class=Response)
|
311 |
+
async def analyze_file(name: str = Form(...), file: UploadFile = File(...), threshold: float = Form(0.6)):
|
312 |
+
try:
|
313 |
+
contents = await file.read()
|
314 |
+
image = Image.open(io.BytesIO(contents))
|
315 |
+
|
316 |
+
predictions_watcher = models["KnochenWächter"](image)
|
317 |
+
predictions_master = models["RöntgenMeister"](image)
|
318 |
+
predictions_locator = models["KnochenAuge"](image)
|
319 |
+
|
320 |
+
filtered_preds = [p for p in predictions_locator if p['score'] >= threshold]
|
321 |
+
analyzed_image = image
|
322 |
+
overall_prediction = "No Fracture"
|
323 |
+
max_confidence = 0.0
|
324 |
+
|
325 |
+
if filtered_preds:
|
326 |
+
analyzed_image = draw_boxes(image, filtered_preds)
|
327 |
+
overall_prediction = "Fracture Detected"
|
328 |
+
max_confidence = max([p['score'] for p in filtered_preds])
|
329 |
+
|
330 |
+
image_stream = io.BytesIO()
|
331 |
+
analyzed_image.save(image_stream, format="PNG")
|
332 |
+
image_bytes = image_stream.getvalue()
|
333 |
+
|
334 |
+
pdf_report = generate_report(name, image_bytes, overall_prediction, max_confidence)
|
335 |
+
|
336 |
+
headers = {
|
337 |
+
'Content-Disposition': 'attachment; filename="report.pdf"'
|
338 |
+
}
|
339 |
+
return Response(content=pdf_report, headers=headers, media_type="application/pdf")
|
340 |
+
|
341 |
+
except Exception as e:
|
342 |
+
error_html = f"""
|
343 |
+
<!DOCTYPE html>
|
344 |
+
<html>
|
345 |
+
<head>
|
346 |
+
<title>Fehler</title>
|
347 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
348 |
+
<style>
|
349 |
+
{COMMON_STYLES}
|
350 |
+
.error-box {
|
351 |
+
background: #fee2e2;
|
352 |
+
border: 1px solid #ef4444;
|
353 |
+
padding: 20px;
|
354 |
+
border-radius: 8px;
|
355 |
+
margin: 20px 0;
|
356 |
+
}
|
357 |
+
</style>
|
358 |
+
</head>
|
359 |
+
<body>
|
360 |
+
<div class="container">
|
361 |
+
<div class="error-box">
|
362 |
+
<h3>Fehler</h3>
|
363 |
+
<p>{str(e)}</p>
|
364 |
+
</div>
|
365 |
+
<a href="/" class="button back-button">
|
366 |
+
← Zurück
|
367 |
+
<div class="button-progress"></div>
|
368 |
+
</a>
|
369 |
+
</div>
|
370 |
+
</body>
|
371 |
+
</html>
|
372 |
+
"""
|
373 |
+
return HTMLResponse(content=error_html)
|
374 |
+
|
375 |
+
if __name__ == "__main__":
|
376 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|
377 |
+
|
378 |
+
|