Spaces:
Runtime error
Runtime error
File size: 2,716 Bytes
9b6c439 4d21bee 89ea49b 46d02f4 dfcc660 89ea49b dfcc660 89ea49b 46d02f4 dfcc660 89ea49b 46d02f4 dfcc660 89ea49b 4d21bee 411567e de45564 411567e 4d21bee 411567e 4d21bee 411567e 4d21bee 99d8161 f321fd2 2280fc9 dfcc660 2280fc9 dfcc660 2280fc9 f321fd2 f6b2292 99d8161 f321fd2 4d21bee 76f1e3b dfcc660 76f1e3b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
from utils import *
import gradio as gr
from sentence_transformers import SentenceTransformer
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
def download_model():
# 下載並快取SentenceTransformer所需的模型和tokenizer
SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
# 下載並快取AutoTokenizer所需的模型
biobart_model = "fuhsiao/BioBART-PMC-EXT-Section"
AutoTokenizer.from_pretrained(biobart_model)
AutoModelForSeq2SeqLM.from_pretrained(biobart_model)
# 下載並快取AutoModelForSeq2SeqLM所需的模型
bart_model = "fuhsiao/BART-PMC-EXT-Section"
AutoTokenizer.from_pretrained(bart_model)
AutoModelForSeq2SeqLM.from_pretrained(bart_model)
return True
def main(file, ext_threshold, article_type):
if file is None or ext_threshold is None or article_type is None:
return 'Please confirm that the file and settings are correct.'
paper = read_text_to_json(file.name)
if not is_valid_format(paper):
return "invalid_format"
sentJson = convert_to_sentence_json(paper)
sentFeat = extract_sentence_features(sentJson)
ExtModel = load_ExtModel('model/LGB_model_F10_S.pkl')
ext = extractive_method(sentJson, sentFeat, ExtModel, threshold=ext_threshold, TGB=False)
abstr_model_path = ''
if article_type == 'non-specialized field':
abstr_model_path = 'fuhsiao/BART-PMC-EXT-Section'
elif article_type == 'biomedical field':
abstr_model_path = 'fuhsiao/BioBART-PMC-EXT-Section'
TOKENIZER, ABSTRMODEL = load_AbstrModel(abstr_model_path)
abstr = abstractive_method(ext, tokenizer=TOKENIZER, model=ABSTRMODEL)
result = ''
for key, sec in zip(['I','M','R','D'], ['Introduction', 'Methods', 'Results', 'Discussion/Conclusion']):
result += f"{sec}\n{abstr[key]}\n\n"
return result
if __name__ == '__main__':
download_model()
# 定義Gradio介面
iface = gr.Interface(
fn=main,
inputs=[
gr.inputs.File(),
gr.inputs.Slider(minimum=0.5, maximum=1, default=0.5, step=0.01, label="Extractive - Threshold"),
gr.inputs.Dropdown(["non-specialized field", "biomedical field"],default="non-specialized field", label="Abstractive - Field")
],
outputs=gr.outputs.Textbox(label="Output - Structured Abstract"),
title="Ext-Abs-StructuredSum",
description="please upload a .txt file formatted in the form of the example.",
# examples=[['text.txt']],
allow_flagging='never'
)
# 啟動Gradio介面
iface.launch(share=False) # share=False 用於停用分享模式
|