File size: 16,381 Bytes
8bddfde
d25f5c8
 
 
 
 
 
 
 
 
ee0d3a0
d25f5c8
 
 
8bddfde
 
d25f5c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
import gradio as gr
import spaces
import torch
import os
import tempfile
import sqlite3
import json
import hashlib
from pathlib import Path
from typing import List, Dict, Any, Tuple
import pypdf2 as PyPDF2
import docx
import fitz  # pymupdf
from unstructured.partition.auto import partition


os.environ["TRITON_CACHE_DIR"] = "/tmp/triton_cache"
os.environ["TORCH_COMPILE_DISABLE"] = "1"


# PyLate imports
from pylate import models, indexes, retrieve

# Global variables for PyLate components
model = None
index = None
retriever = None
metadata_db = None

# ===== DOCUMENT PROCESSING FUNCTIONS =====


def extract_text_from_pdf(file_path: str) -> str:
    """Extract text from PDF file."""
    text = ""
    try:
        # Try PyMuPDF first (better for complex PDFs)
        doc = fitz.open(file_path)
        for page in doc:
            text += page.get_text() + "\n"
        doc.close()
    except:
        # Fallback to PyPDF2
        try:
            with open(file_path, 'rb') as file:
                pdf_reader = PyPDF2.PdfReader(file)
                for page in pdf_reader.pages:
                    text += page.extract_text() + "\n"
        except:
            # Last resort: unstructured
            try:
                elements = partition(filename=file_path)
                text = "\n".join([str(element) for element in elements])
            except:
                text = "Error: Could not extract text from PDF"

    return text.strip()


def extract_text_from_docx(file_path: str) -> str:
    """Extract text from DOCX file."""
    try:
        doc = docx.Document(file_path)
        text = ""
        for paragraph in doc.paragraphs:
            text += paragraph.text + "\n"
        return text.strip()
    except:
        return "Error: Could not extract text from DOCX"


def extract_text_from_txt(file_path: str) -> str:
    """Extract text from TXT file."""
    try:
        with open(file_path, 'r', encoding='utf-8') as file:
            return file.read().strip()
    except:
        try:
            with open(file_path, 'r', encoding='latin1') as file:
                return file.read().strip()
        except:
            return "Error: Could not read text file"


def chunk_text(text: str, chunk_size: int = 1000, overlap: int = 100) -> List[Dict[str, Any]]:
    """Chunk text with overlap and return metadata."""
    chunks = []
    start = 0
    chunk_index = 0

    while start < len(text):
        end = start + chunk_size
        chunk_text = text[start:end]

        # Try to break at sentence boundary
        if end < len(text):
            last_period = chunk_text.rfind('.')
            last_newline = chunk_text.rfind('\n')
            break_point = max(last_period, last_newline)

            if break_point > chunk_size * 0.7:
                chunk_text = chunk_text[:break_point + 1]
                end = start + break_point + 1

        if chunk_text.strip():
            chunks.append({
                'text': chunk_text.strip(),
                'start': start,
                'end': end,
                'index': chunk_index,
                'length': len(chunk_text.strip())
            })
            chunk_index += 1

        start = max(start + 1, end - overlap)

    return chunks

# ===== METADATA DATABASE =====


def init_metadata_db():
    """Initialize SQLite database for metadata."""
    global metadata_db

    db_path = "metadata.db"
    metadata_db = sqlite3.connect(db_path, check_same_thread=False)

    metadata_db.execute("""
        CREATE TABLE IF NOT EXISTS documents (
            doc_id TEXT PRIMARY KEY,
            filename TEXT NOT NULL,
            file_hash TEXT NOT NULL,
            original_text TEXT NOT NULL,
            chunk_index INTEGER NOT NULL,
            total_chunks INTEGER NOT NULL,
            chunk_start INTEGER NOT NULL,
            chunk_end INTEGER NOT NULL,
            chunk_size INTEGER NOT NULL,
            created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
        )
    """)

    metadata_db.execute("""
        CREATE INDEX IF NOT EXISTS idx_filename ON documents(filename);
    """)

    metadata_db.commit()


def add_document_metadata(doc_id: str, filename: str, file_hash: str,
                          original_text: str, chunk_info: Dict[str, Any], total_chunks: int):
    """Add document metadata to database."""
    global metadata_db

    metadata_db.execute("""
        INSERT OR REPLACE INTO documents 
        (doc_id, filename, file_hash, original_text, chunk_index, total_chunks,
         chunk_start, chunk_end, chunk_size)
        VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?)
    """, (
        doc_id, filename, file_hash, original_text,
        chunk_info['index'], total_chunks,
        chunk_info['start'], chunk_info['end'], chunk_info['length']
    ))
    metadata_db.commit()


def get_document_metadata(doc_id: str) -> Dict[str, Any]:
    """Get document metadata by ID."""
    global metadata_db

    cursor = metadata_db.execute(
        "SELECT * FROM documents WHERE doc_id = ?", (doc_id,)
    )
    row = cursor.fetchone()

    if row:
        columns = [desc[0] for desc in cursor.description]
        return dict(zip(columns, row))
    return {}

# ===== PYLATE INITIALIZATION =====


@spaces.GPU
def initialize_pylate(model_name: str = "lightonai/GTE-ModernColBERT-v1") -> str:
    """Initialize PyLate components on GPU."""
    global model, index, retriever

    try:
        # Initialize metadata database
        init_metadata_db()

        # Load ColBERT model
        model = models.ColBERT(model_name_or_path=model_name)

        # Move to GPU if available
        if torch.cuda.is_available():
            model = model.to('cuda')

        # Initialize PLAID index with CPU fallback for k-means
        index = indexes.PLAID(
            index_folder="./pylate_index",
            index_name="documents",
            override=True,
            kmeans_niters=1,  # Reduce k-means iterations
            nbits=1           # Reduce quantization bits
        )

        # Initialize retriever
        retriever = retrieve.ColBERT(index=index)

        return f"βœ… PyLate initialized successfully!\nModel: {model_name}\nDevice: {'GPU' if torch.cuda.is_available() else 'CPU'}"

    except Exception as e:
        return f"❌ Error initializing PyLate: {str(e)}"

# ===== DOCUMENT PROCESSING =====


@spaces.GPU
def process_documents(files, chunk_size: int = 1000, overlap: int = 100) -> str:
    """Process uploaded documents and add to index."""
    global model, index, metadata_db

    if not model or not index:
        return "❌ Please initialize PyLate first!"

    if not files:
        return "❌ No files uploaded!"

    try:
        all_documents = []
        all_doc_ids = []
        processed_files = []

        for file in files:
            # Get file info
            filename = Path(file.name).name
            file_path = file.name

            # Calculate file hash
            with open(file_path, 'rb') as f:
                file_hash = hashlib.md5(f.read()).hexdigest()

            # Extract text based on file type
            if filename.lower().endswith('.pdf'):
                text = extract_text_from_pdf(file_path)
            elif filename.lower().endswith('.docx'):
                text = extract_text_from_docx(file_path)
            elif filename.lower().endswith('.txt'):
                text = extract_text_from_txt(file_path)
            else:
                continue

            if not text or text.startswith("Error:"):
                continue

            # Chunk the text
            chunks = chunk_text(text, chunk_size, overlap)

            # Process each chunk
            for chunk in chunks:
                doc_id = f"{filename}_chunk_{chunk['index']}"
                all_documents.append(chunk['text'])
                all_doc_ids.append(doc_id)

                # Store metadata
                add_document_metadata(
                    doc_id=doc_id,
                    filename=filename,
                    file_hash=file_hash,
                    original_text=chunk['text'],
                    chunk_info=chunk,
                    total_chunks=len(chunks)
                )

            processed_files.append(f"{filename}: {len(chunks)} chunks")

        if not all_documents:
            return "❌ No text could be extracted from uploaded files!"

        # Encode documents with PyLate
        document_embeddings = model.encode(
            all_documents,
            batch_size=16,  # Smaller batch for ZeroGPU
            is_query=False,
            show_progress_bar=True
        )

        # Add to PLAID index
        index.add_documents(
            documents_ids=all_doc_ids,
            documents_embeddings=document_embeddings
        )

        result = f"βœ… Successfully processed {len(files)} files:\n"
        result += f"πŸ“„ Total chunks: {len(all_documents)}\n"
        result += f"πŸ” Indexed documents:\n"
        for file_info in processed_files:
            result += f"  β€’ {file_info}\n"

        return result

    except Exception as e:
        return f"❌ Error processing documents: {str(e)}"

# ===== SEARCH FUNCTION =====


@spaces.GPU
def search_documents(query: str, k: int = 5, show_chunks: bool = True) -> str:
    """Search documents using PyLate."""
    global model, retriever, metadata_db

    if not model or not retriever:
        return "❌ Please initialize PyLate and process documents first!"

    if not query.strip():
        return "❌ Please enter a search query!"

    try:
        # Encode query
        query_embedding = model.encode([query], is_query=True)

        # Search
        results = retriever.retrieve(query_embedding, k=k)[0]

        if not results:
            return "πŸ” No results found for your query."

        # Format results with metadata
        formatted_results = [f"πŸ” **Search Results for:** '{query}'\n"]

        for i, result in enumerate(results):
            doc_id = result['id']
            score = result['score']

            # Get metadata
            metadata = get_document_metadata(doc_id)

            formatted_results.append(f"## Result {i+1} (Score: {score:.2f})")
            formatted_results.append(
                f"**File:** {metadata.get('filename', 'Unknown')}")
            formatted_results.append(
                f"**Chunk:** {metadata.get('chunk_index', 0) + 1}/{metadata.get('total_chunks', 1)}")

            if show_chunks:
                text = metadata.get('original_text', '')
                preview = text[:300] + "..." if len(text) > 300 else text
                formatted_results.append(f"**Text:** {preview}")

            formatted_results.append("---")

        return "\n".join(formatted_results)

    except Exception as e:
        return f"❌ Error searching: {str(e)}"

# ===== GRADIO INTERFACE =====


def create_interface():
    """Create the Gradio interface."""

    with gr.Blocks(title="PyLate Document Search", theme=gr.themes.Soft()) as demo:
        gr.Markdown("""
        # πŸ” PyLate Document Search
        ### Powered by ColBERT and ZeroGPU H100
        
        Upload documents, process them with PyLate, and perform semantic search!
        """)

        with gr.Tab("πŸš€ Setup"):
            gr.Markdown("### Initialize PyLate System")

            model_choice = gr.Dropdown(
                choices=[
                    # "lightonai/GTE-ModernColBERT-v1",
                    "colbert-ir/colbertv2.0",
                    "sentence-transformers/all-MiniLM-L6-v2"
                ],
                value="lightonai/GTE-ModernColBERT-v1",
                label="Select Model"
            )

            init_btn = gr.Button("Initialize PyLate", variant="primary")
            init_status = gr.Textbox(label="Initialization Status", lines=3)

            init_btn.click(
                initialize_pylate,
                inputs=model_choice,
                outputs=init_status
            )

        with gr.Tab("πŸ“„ Document Upload"):
            gr.Markdown("### Upload and Process Documents")

            with gr.Row():
                with gr.Column():
                    file_upload = gr.File(
                        file_count="multiple",
                        file_types=[".pdf", ".docx", ".txt"],
                        label="Upload Documents (PDF, DOCX, TXT)"
                    )

                    with gr.Row():
                        chunk_size = gr.Slider(
                            minimum=500,
                            maximum=3000,
                            value=1000,
                            step=100,
                            label="Chunk Size (characters)"
                        )

                        overlap = gr.Slider(
                            minimum=0,
                            maximum=500,
                            value=100,
                            step=50,
                            label="Chunk Overlap (characters)"
                        )

                    process_btn = gr.Button(
                        "Process Documents", variant="primary")

                with gr.Column():
                    process_status = gr.Textbox(
                        label="Processing Status",
                        lines=10,
                        max_lines=15
                    )

            process_btn.click(
                process_documents,
                inputs=[file_upload, chunk_size, overlap],
                outputs=process_status
            )

        with gr.Tab("πŸ” Search"):
            gr.Markdown("### Search Your Documents")

            with gr.Row():
                with gr.Column():
                    search_query = gr.Textbox(
                        label="Search Query",
                        placeholder="Enter your search query...",
                        lines=2
                    )

                    with gr.Row():
                        num_results = gr.Slider(
                            minimum=1,
                            maximum=20,
                            value=5,
                            step=1,
                            label="Number of Results"
                        )

                        show_chunks = gr.Checkbox(
                            value=True,
                            label="Show Text Chunks"
                        )

                    search_btn = gr.Button("Search", variant="primary")

                with gr.Column():
                    search_results = gr.Textbox(
                        label="Search Results",
                        lines=15,
                        max_lines=20
                    )

            search_btn.click(
                search_documents,
                inputs=[search_query, num_results, show_chunks],
                outputs=search_results
            )

        with gr.Tab("ℹ️ Info"):
            gr.Markdown("""
            ### About This System
            
            **PyLate Document Search** is a semantic search system that uses:
            
            - **PyLate**: A flexible library for ColBERT models
            - **ColBERT**: Late interaction retrieval for high-quality search
            - **ZeroGPU**: Hugging Face's free H100 GPU infrastructure
            
            #### Features:
            - πŸ“„ Multi-format document support (PDF, DOCX, TXT)
            - βœ‚οΈ Intelligent text chunking with overlap
            - 🧠 Semantic search using ColBERT embeddings
            - πŸ’Ύ Metadata tracking for result context
            - ⚑ GPU-accelerated processing
            
            #### Usage Tips:
            1. Initialize the system first (required)
            2. Upload your documents and process them
            3. Use natural language queries for best results
            4. Adjust chunk size based on your document types
            
            #### Model Information:
            - **GTE-ModernColBERT**: Latest high-performance model
            - **ColBERTv2**: Original Stanford implementation
            - **MiniLM**: Faster, smaller model for quick testing
            
            Built with ❀️ using PyLate and Gradio
            """)

    return demo

# ===== MAIN =====


if __name__ == "__main__":
    demo = create_interface()
    demo.launch(
        share=False,
        server_name="0.0.0.0",
        server_port=7860
    )