Spaces:
Running
on
Zero
Running
on
Zero
app.py
CHANGED
@@ -1,22 +1,153 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
4 |
import os
|
5 |
-
import
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
os.environ["TRITON_CACHE_DIR"] = "/tmp/triton_cache"
|
16 |
os.environ["TORCH_COMPILE_DISABLE"] = "1"
|
17 |
|
18 |
-
|
19 |
-
from pylate import models, indexes, retrieve
|
20 |
|
21 |
# Global variables for PyLate components
|
22 |
model = None
|
@@ -27,483 +158,577 @@ metadata_db = None
|
|
27 |
# ===== DOCUMENT PROCESSING FUNCTIONS =====
|
28 |
|
29 |
def extract_text_from_pdf(file_path: str) -> str:
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
def extract_text_from_docx(file_path: str) -> str:
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
64 |
|
65 |
def extract_text_from_txt(file_path: str) -> str:
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
|
|
|
|
76 |
|
77 |
def chunk_text(text: str, chunk_size: int = 1000, overlap: int = 100) -> List[Dict[str, Any]]:
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
|
111 |
# ===== METADATA DATABASE =====
|
112 |
|
113 |
def init_metadata_db():
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
|
141 |
def add_document_metadata(doc_id: str, filename: str, file_hash: str,
|
142 |
original_text: str, chunk_info: Dict[str, Any], total_chunks: int):
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
|
158 |
def get_document_metadata(doc_id: str) -> Dict[str, Any]:
|
159 |
-
|
160 |
-
|
161 |
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
|
172 |
# ===== PYLATE INITIALIZATION =====
|
173 |
|
174 |
-
@spaces.GPU
|
175 |
def initialize_pylate(model_name: str = "colbert-ir/colbertv2.0") -> str:
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
|
|
|
|
|
|
206 |
|
207 |
# ===== DOCUMENT PROCESSING =====
|
208 |
|
209 |
-
@spaces.GPU
|
210 |
def process_documents(files, chunk_size: int = 1000, overlap: int = 100) -> str:
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
296 |
|
297 |
# ===== SEARCH FUNCTION =====
|
298 |
|
299 |
-
@spaces.GPU
|
300 |
def search_documents(query: str, k: int = 5, show_chunks: bool = True) -> str:
|
301 |
-
|
302 |
-
|
303 |
|
304 |
-
|
305 |
-
|
306 |
|
307 |
-
|
308 |
-
|
309 |
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
|
314 |
-
|
315 |
-
|
316 |
|
317 |
-
|
318 |
-
|
319 |
|
320 |
-
|
321 |
-
|
322 |
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
|
327 |
-
|
328 |
-
|
329 |
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
|
|
|
|
|
|
340 |
|
341 |
-
|
342 |
|
343 |
-
|
|
|
344 |
|
345 |
-
|
346 |
-
|
347 |
|
348 |
# ===== GRADIO INTERFACE =====
|
349 |
|
350 |
def create_interface():
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
-
|
486 |
-
|
487 |
-
|
488 |
-
|
489 |
-
|
490 |
-
|
491 |
-
|
492 |
-
|
493 |
-
|
494 |
-
|
495 |
-
|
496 |
-
|
497 |
-
|
498 |
-
|
499 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
500 |
|
501 |
# ===== MAIN =====
|
502 |
|
503 |
if __name__ == "__main__":
|
504 |
-
|
505 |
-
|
506 |
-
|
507 |
-
|
508 |
-
|
509 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
"""
|
3 |
+
PyLate ZeroGPU Document Search with Runtime Package Installation
|
4 |
+
Complete version that installs all dependencies at startup if needed.
|
5 |
+
"""
|
6 |
+
|
7 |
+
import subprocess
|
8 |
+
import sys
|
9 |
import os
|
10 |
+
import time
|
11 |
+
|
12 |
+
print("π Starting PyLate ZeroGPU Document Search...")
|
13 |
+
print("π§ Checking and installing required packages...")
|
14 |
+
|
15 |
+
# ===== RUNTIME PACKAGE INSTALLATION =====
|
16 |
+
def install_package(package, quiet=True):
|
17 |
+
"""Install a package at runtime."""
|
18 |
+
try:
|
19 |
+
if quiet:
|
20 |
+
subprocess.check_call([
|
21 |
+
sys.executable, '-m', 'pip', 'install', package,
|
22 |
+
'--quiet', '--disable-pip-version-check'
|
23 |
+
], stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
|
24 |
+
else:
|
25 |
+
subprocess.check_call([sys.executable, '-m', 'pip', 'install', package])
|
26 |
+
return True
|
27 |
+
except Exception as e:
|
28 |
+
print(f"β οΈ Failed to install {package}: {e}")
|
29 |
+
return False
|
30 |
+
|
31 |
+
def check_and_install_packages():
|
32 |
+
"""Check and install all required packages."""
|
33 |
+
|
34 |
+
# Define packages with their import names and pip names
|
35 |
+
packages_to_check = [
|
36 |
+
# (import_name, pip_package, test_import)
|
37 |
+
('gradio', 'gradio==4.44.0', lambda: __import__('gradio')),
|
38 |
+
('spaces', 'spaces', lambda: __import__('spaces')),
|
39 |
+
('torch', 'torch', lambda: __import__('torch')),
|
40 |
+
('torchvision', 'torchvision', lambda: __import__('torchvision')),
|
41 |
+
('torchaudio', 'torchaudio', lambda: __import__('torchaudio')),
|
42 |
+
('transformers', 'transformers==4.48.2', lambda: __import__('transformers')),
|
43 |
+
('sentence_transformers', 'sentence-transformers', lambda: __import__('sentence_transformers')),
|
44 |
+
('docx', 'python-docx', lambda: __import__('docx')),
|
45 |
+
('fitz', 'pymupdf', lambda: __import__('fitz')),
|
46 |
+
('unstructured', 'unstructured', lambda: __import__('unstructured')),
|
47 |
+
('pandas', 'pandas', lambda: __import__('pandas')),
|
48 |
+
('numpy', 'numpy', lambda: __import__('numpy')),
|
49 |
+
('huggingface_hub', 'huggingface_hub', lambda: __import__('huggingface_hub')),
|
50 |
+
('accelerate', 'accelerate', lambda: __import__('accelerate')),
|
51 |
+
('pylate', 'pylate==1.2.0', lambda: __import__('pylate')),
|
52 |
+
]
|
53 |
+
|
54 |
+
installed_count = 0
|
55 |
+
failed_packages = []
|
56 |
+
|
57 |
+
for import_name, pip_package, test_func in packages_to_check:
|
58 |
+
try:
|
59 |
+
test_func()
|
60 |
+
print(f"β
{import_name} - already installed")
|
61 |
+
installed_count += 1
|
62 |
+
except ImportError:
|
63 |
+
print(f"π¦ Installing {pip_package}...")
|
64 |
+
success = install_package(pip_package, quiet=False)
|
65 |
+
if success:
|
66 |
+
try:
|
67 |
+
# Test import after installation
|
68 |
+
test_func()
|
69 |
+
print(f"β
{import_name} - installed successfully")
|
70 |
+
installed_count += 1
|
71 |
+
except ImportError:
|
72 |
+
print(f"β {import_name} - installation failed (import test failed)")
|
73 |
+
failed_packages.append(import_name)
|
74 |
+
else:
|
75 |
+
print(f"β {import_name} - installation failed")
|
76 |
+
failed_packages.append(import_name)
|
77 |
+
|
78 |
+
print(f"\nπ Installation Summary:")
|
79 |
+
print(f" β
Successfully installed/verified: {installed_count}/{len(packages_to_check)}")
|
80 |
+
|
81 |
+
if failed_packages:
|
82 |
+
print(f" β Failed packages: {', '.join(failed_packages)}")
|
83 |
+
print(f" β οΈ App may not work correctly with missing packages")
|
84 |
+
else:
|
85 |
+
print(f" π All packages ready!")
|
86 |
+
|
87 |
+
return len(failed_packages) == 0
|
88 |
+
|
89 |
+
# Install packages before importing anything else
|
90 |
+
installation_success = check_and_install_packages()
|
91 |
+
|
92 |
+
# Now import everything
|
93 |
+
print("\nπ Loading modules...")
|
94 |
+
|
95 |
+
try:
|
96 |
+
import gradio as gr
|
97 |
+
import spaces
|
98 |
+
import torch
|
99 |
+
import tempfile
|
100 |
+
import sqlite3
|
101 |
+
import json
|
102 |
+
import hashlib
|
103 |
+
from pathlib import Path
|
104 |
+
from typing import List, Dict, Any, Tuple
|
105 |
+
print("β
Core modules loaded")
|
106 |
+
except ImportError as e:
|
107 |
+
print(f"β Failed to import core modules: {e}")
|
108 |
+
sys.exit(1)
|
109 |
+
|
110 |
+
# Import document processing modules with fallbacks
|
111 |
+
try:
|
112 |
+
import docx
|
113 |
+
print("β
python-docx loaded")
|
114 |
+
except ImportError:
|
115 |
+
print("β οΈ python-docx not available - DOCX processing will be disabled")
|
116 |
+
docx = None
|
117 |
+
|
118 |
+
try:
|
119 |
+
import fitz # pymupdf
|
120 |
+
print("β
PyMuPDF loaded")
|
121 |
+
except ImportError:
|
122 |
+
print("β οΈ PyMuPDF not available - PDF processing will be limited")
|
123 |
+
fitz = None
|
124 |
+
|
125 |
+
try:
|
126 |
+
from unstructured.partition.auto import partition
|
127 |
+
print("β
Unstructured loaded")
|
128 |
+
except ImportError:
|
129 |
+
print("β οΈ Unstructured not available - fallback text extraction disabled")
|
130 |
+
partition = None
|
131 |
+
|
132 |
+
try:
|
133 |
+
from pylate import models, indexes, retrieve
|
134 |
+
print("β
PyLate loaded")
|
135 |
+
except ImportError as e:
|
136 |
+
print(f"β PyLate failed to load: {e}")
|
137 |
+
print("π Attempting to install PyLate...")
|
138 |
+
install_package('pylate==1.2.0', quiet=False)
|
139 |
+
try:
|
140 |
+
from pylate import models, indexes, retrieve
|
141 |
+
print("β
PyLate loaded after installation")
|
142 |
+
except ImportError:
|
143 |
+
print("β PyLate installation failed - core functionality unavailable")
|
144 |
+
sys.exit(1)
|
145 |
+
|
146 |
+
# Set environment variables
|
147 |
os.environ["TRITON_CACHE_DIR"] = "/tmp/triton_cache"
|
148 |
os.environ["TORCH_COMPILE_DISABLE"] = "1"
|
149 |
|
150 |
+
print("π― All modules loaded successfully!\n")
|
|
|
151 |
|
152 |
# Global variables for PyLate components
|
153 |
model = None
|
|
|
158 |
# ===== DOCUMENT PROCESSING FUNCTIONS =====
|
159 |
|
160 |
def extract_text_from_pdf(file_path: str) -> str:
|
161 |
+
"""Extract text from PDF file using PyMuPDF and unstructured as fallback."""
|
162 |
+
text = ""
|
163 |
+
|
164 |
+
if not fitz:
|
165 |
+
return "Error: PyMuPDF not available for PDF processing"
|
166 |
+
|
167 |
+
try:
|
168 |
+
# Use PyMuPDF (fitz) - more reliable than PyPDF2
|
169 |
+
doc = fitz.open(file_path)
|
170 |
+
for page in doc:
|
171 |
+
text += page.get_text() + "\n"
|
172 |
+
doc.close()
|
173 |
+
|
174 |
+
# If no text extracted, try unstructured
|
175 |
+
if not text.strip() and partition:
|
176 |
+
elements = partition(filename=file_path)
|
177 |
+
text = "\n".join([str(element) for element in elements])
|
178 |
+
|
179 |
+
except Exception as e:
|
180 |
+
# Final fallback to unstructured
|
181 |
+
if partition:
|
182 |
+
try:
|
183 |
+
elements = partition(filename=file_path)
|
184 |
+
text = "\n".join([str(element) for element in elements])
|
185 |
+
except:
|
186 |
+
text = f"Error: Could not extract text from PDF: {str(e)}"
|
187 |
+
else:
|
188 |
+
text = f"Error: Could not extract text from PDF: {str(e)}"
|
189 |
+
|
190 |
+
return text.strip()
|
191 |
|
192 |
def extract_text_from_docx(file_path: str) -> str:
|
193 |
+
"""Extract text from DOCX file."""
|
194 |
+
if not docx:
|
195 |
+
return "Error: python-docx not available for DOCX processing"
|
196 |
+
|
197 |
+
try:
|
198 |
+
doc = docx.Document(file_path)
|
199 |
+
text = ""
|
200 |
+
for paragraph in doc.paragraphs:
|
201 |
+
text += paragraph.text + "\n"
|
202 |
+
return text.strip()
|
203 |
+
except Exception as e:
|
204 |
+
return f"Error: Could not extract text from DOCX: {str(e)}"
|
205 |
|
206 |
def extract_text_from_txt(file_path: str) -> str:
|
207 |
+
"""Extract text from TXT file."""
|
208 |
+
try:
|
209 |
+
with open(file_path, 'r', encoding='utf-8') as file:
|
210 |
+
return file.read().strip()
|
211 |
+
except UnicodeDecodeError:
|
212 |
+
try:
|
213 |
+
with open(file_path, 'r', encoding='latin1') as file:
|
214 |
+
return file.read().strip()
|
215 |
+
except Exception as e:
|
216 |
+
return f"Error: Could not read text file: {str(e)}"
|
217 |
+
except Exception as e:
|
218 |
+
return f"Error: Could not read text file: {str(e)}"
|
219 |
|
220 |
def chunk_text(text: str, chunk_size: int = 1000, overlap: int = 100) -> List[Dict[str, Any]]:
|
221 |
+
"""Chunk text with overlap and return metadata."""
|
222 |
+
chunks = []
|
223 |
+
start = 0
|
224 |
+
chunk_index = 0
|
225 |
+
|
226 |
+
while start < len(text):
|
227 |
+
end = start + chunk_size
|
228 |
+
chunk_text = text[start:end]
|
229 |
+
|
230 |
+
# Try to break at sentence boundary
|
231 |
+
if end < len(text):
|
232 |
+
last_period = chunk_text.rfind('.')
|
233 |
+
last_newline = chunk_text.rfind('\n')
|
234 |
+
break_point = max(last_period, last_newline)
|
235 |
+
|
236 |
+
if break_point > chunk_size * 0.7:
|
237 |
+
chunk_text = chunk_text[:break_point + 1]
|
238 |
+
end = start + break_point + 1
|
239 |
+
|
240 |
+
if chunk_text.strip():
|
241 |
+
chunks.append({
|
242 |
+
'text': chunk_text.strip(),
|
243 |
+
'start': start,
|
244 |
+
'end': end,
|
245 |
+
'index': chunk_index,
|
246 |
+
'length': len(chunk_text.strip())
|
247 |
+
})
|
248 |
+
chunk_index += 1
|
249 |
+
|
250 |
+
start = max(start + 1, end - overlap)
|
251 |
+
|
252 |
+
return chunks
|
253 |
|
254 |
# ===== METADATA DATABASE =====
|
255 |
|
256 |
def init_metadata_db():
|
257 |
+
"""Initialize SQLite database for metadata."""
|
258 |
+
global metadata_db
|
259 |
+
|
260 |
+
db_path = "metadata.db"
|
261 |
+
metadata_db = sqlite3.connect(db_path, check_same_thread=False)
|
262 |
+
|
263 |
+
metadata_db.execute("""
|
264 |
+
CREATE TABLE IF NOT EXISTS documents (
|
265 |
+
doc_id TEXT PRIMARY KEY,
|
266 |
+
filename TEXT NOT NULL,
|
267 |
+
file_hash TEXT NOT NULL,
|
268 |
+
original_text TEXT NOT NULL,
|
269 |
+
chunk_index INTEGER NOT NULL,
|
270 |
+
total_chunks INTEGER NOT NULL,
|
271 |
+
chunk_start INTEGER NOT NULL,
|
272 |
+
chunk_end INTEGER NOT NULL,
|
273 |
+
chunk_size INTEGER NOT NULL,
|
274 |
+
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
|
275 |
+
)
|
276 |
+
""")
|
277 |
+
|
278 |
+
metadata_db.execute("""
|
279 |
+
CREATE INDEX IF NOT EXISTS idx_filename ON documents(filename);
|
280 |
+
""")
|
281 |
+
|
282 |
+
metadata_db.commit()
|
283 |
|
284 |
def add_document_metadata(doc_id: str, filename: str, file_hash: str,
|
285 |
original_text: str, chunk_info: Dict[str, Any], total_chunks: int):
|
286 |
+
"""Add document metadata to database."""
|
287 |
+
global metadata_db
|
288 |
+
|
289 |
+
metadata_db.execute("""
|
290 |
+
INSERT OR REPLACE INTO documents
|
291 |
+
(doc_id, filename, file_hash, original_text, chunk_index, total_chunks,
|
292 |
+
chunk_start, chunk_end, chunk_size)
|
293 |
+
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?)
|
294 |
+
""", (
|
295 |
+
doc_id, filename, file_hash, original_text,
|
296 |
+
chunk_info['index'], total_chunks,
|
297 |
+
chunk_info['start'], chunk_info['end'], chunk_info['length']
|
298 |
+
))
|
299 |
+
metadata_db.commit()
|
300 |
|
301 |
def get_document_metadata(doc_id: str) -> Dict[str, Any]:
|
302 |
+
"""Get document metadata by ID."""
|
303 |
+
global metadata_db
|
304 |
|
305 |
+
cursor = metadata_db.execute(
|
306 |
+
"SELECT * FROM documents WHERE doc_id = ?", (doc_id,)
|
307 |
+
)
|
308 |
+
row = cursor.fetchone()
|
309 |
|
310 |
+
if row:
|
311 |
+
columns = [desc[0] for desc in cursor.description]
|
312 |
+
return dict(zip(columns, row))
|
313 |
+
return {}
|
314 |
|
315 |
# ===== PYLATE INITIALIZATION =====
|
316 |
|
317 |
+
@spaces.GPU(duration=120) # Allow 2 minutes for initialization
|
318 |
def initialize_pylate(model_name: str = "colbert-ir/colbertv2.0") -> str:
|
319 |
+
"""Initialize PyLate components on ZeroGPU H200."""
|
320 |
+
global model, index, retriever
|
321 |
+
|
322 |
+
try:
|
323 |
+
# Initialize metadata database
|
324 |
+
init_metadata_db()
|
325 |
+
|
326 |
+
# Load ColBERT model
|
327 |
+
model = models.ColBERT(model_name_or_path=model_name)
|
328 |
+
|
329 |
+
# Move to GPU - ZeroGPU provides CUDA access
|
330 |
+
device_info = "CPU"
|
331 |
+
if torch.cuda.is_available():
|
332 |
+
model = model.to('cuda')
|
333 |
+
device_name = torch.cuda.get_device_name()
|
334 |
+
device_info = f"GPU: {device_name}"
|
335 |
+
|
336 |
+
# Initialize PLAID index with optimized settings for ZeroGPU
|
337 |
+
index = indexes.PLAID(
|
338 |
+
index_folder="./pylate_index",
|
339 |
+
index_name="documents",
|
340 |
+
override=True,
|
341 |
+
kmeans_niters=1, # Reduce k-means iterations for faster setup
|
342 |
+
nbits=2 # Optimized for memory efficiency
|
343 |
+
)
|
344 |
+
|
345 |
+
# Initialize retriever
|
346 |
+
retriever = retrieve.ColBERT(index=index)
|
347 |
+
|
348 |
+
return f"β
PyLate initialized successfully on ZeroGPU!\nπ₯ Model: {model_name}\nπ― Device: {device_info}\nπΎ VRAM: ~70GB available\nπ Ready for document processing!"
|
349 |
+
|
350 |
+
except Exception as e:
|
351 |
+
return f"β Error initializing PyLate: {str(e)}\n\nPlease check the logs for more details."
|
352 |
|
353 |
# ===== DOCUMENT PROCESSING =====
|
354 |
|
355 |
+
@spaces.GPU(duration=300) # Allow 5 minutes for processing
|
356 |
def process_documents(files, chunk_size: int = 1000, overlap: int = 100) -> str:
|
357 |
+
"""Process uploaded documents and add to index using ZeroGPU."""
|
358 |
+
global model, index, metadata_db
|
359 |
+
|
360 |
+
if not model or not index:
|
361 |
+
return "β Please initialize PyLate first!"
|
362 |
+
|
363 |
+
if not files:
|
364 |
+
return "β No files uploaded!"
|
365 |
+
|
366 |
+
try:
|
367 |
+
all_documents = []
|
368 |
+
all_doc_ids = []
|
369 |
+
processed_files = []
|
370 |
+
skipped_files = []
|
371 |
+
|
372 |
+
for file in files:
|
373 |
+
# Get file info
|
374 |
+
filename = Path(file.name).name
|
375 |
+
file_path = file.name
|
376 |
+
|
377 |
+
# Calculate file hash
|
378 |
+
with open(file_path, 'rb') as f:
|
379 |
+
file_hash = hashlib.md5(f.read()).hexdigest()
|
380 |
+
|
381 |
+
# Extract text based on file type
|
382 |
+
text = ""
|
383 |
+
if filename.lower().endswith('.pdf'):
|
384 |
+
if fitz:
|
385 |
+
text = extract_text_from_pdf(file_path)
|
386 |
+
else:
|
387 |
+
skipped_files.append(f"{filename}: PDF processing not available")
|
388 |
+
continue
|
389 |
+
elif filename.lower().endswith('.docx'):
|
390 |
+
if docx:
|
391 |
+
text = extract_text_from_docx(file_path)
|
392 |
+
else:
|
393 |
+
skipped_files.append(f"{filename}: DOCX processing not available")
|
394 |
+
continue
|
395 |
+
elif filename.lower().endswith('.txt'):
|
396 |
+
text = extract_text_from_txt(file_path)
|
397 |
+
else:
|
398 |
+
skipped_files.append(f"{filename}: Unsupported file type")
|
399 |
+
continue
|
400 |
+
|
401 |
+
if not text or text.startswith("Error:"):
|
402 |
+
skipped_files.append(f"{filename}: Failed to extract text")
|
403 |
+
continue
|
404 |
+
|
405 |
+
# Chunk the text
|
406 |
+
chunks = chunk_text(text, chunk_size, overlap)
|
407 |
+
|
408 |
+
if not chunks:
|
409 |
+
skipped_files.append(f"{filename}: No valid chunks created")
|
410 |
+
continue
|
411 |
+
|
412 |
+
# Process each chunk
|
413 |
+
for chunk in chunks:
|
414 |
+
doc_id = f"{filename}_chunk_{chunk['index']}"
|
415 |
+
all_documents.append(chunk['text'])
|
416 |
+
all_doc_ids.append(doc_id)
|
417 |
+
|
418 |
+
# Store metadata
|
419 |
+
add_document_metadata(
|
420 |
+
doc_id=doc_id,
|
421 |
+
filename=filename,
|
422 |
+
file_hash=file_hash,
|
423 |
+
original_text=chunk['text'],
|
424 |
+
chunk_info=chunk,
|
425 |
+
total_chunks=len(chunks)
|
426 |
+
)
|
427 |
+
|
428 |
+
processed_files.append(f"{filename}: {len(chunks)} chunks")
|
429 |
+
|
430 |
+
if not all_documents:
|
431 |
+
return "β No text could be extracted from uploaded files!\n" + "\n".join(skipped_files)
|
432 |
+
|
433 |
+
# Encode documents with PyLate on H200 GPU
|
434 |
+
document_embeddings = model.encode(
|
435 |
+
all_documents,
|
436 |
+
batch_size=32, # Optimized batch size for H200's 70GB VRAM
|
437 |
+
is_query=False,
|
438 |
+
show_progress_bar=True
|
439 |
+
)
|
440 |
+
|
441 |
+
# Add to PLAID index
|
442 |
+
index.add_documents(
|
443 |
+
documents_ids=all_doc_ids,
|
444 |
+
documents_embeddings=document_embeddings
|
445 |
+
)
|
446 |
+
|
447 |
+
result = f"β
Successfully processed {len([f for f in files if not any(f.name in skip for skip in skipped_files)])} files on ZeroGPU H200:\n"
|
448 |
+
result += f"π Total chunks indexed: {len(all_documents)}\n"
|
449 |
+
result += f"π Documents processed:\n"
|
450 |
+
for file_info in processed_files:
|
451 |
+
result += f" β’ {file_info}\n"
|
452 |
+
|
453 |
+
if skipped_files:
|
454 |
+
result += f"\nβ οΈ Skipped files:\n"
|
455 |
+
for skip_info in skipped_files:
|
456 |
+
result += f" β’ {skip_info}\n"
|
457 |
+
|
458 |
+
result += f"\nπ Document index ready for search!"
|
459 |
+
return result
|
460 |
+
|
461 |
+
except Exception as e:
|
462 |
+
return f"β Error processing documents: {str(e)}\n\nPlease check your files and try again."
|
463 |
|
464 |
# ===== SEARCH FUNCTION =====
|
465 |
|
466 |
+
@spaces.GPU(duration=60) # 1 minute for search
|
467 |
def search_documents(query: str, k: int = 5, show_chunks: bool = True) -> str:
|
468 |
+
"""Search documents using PyLate on ZeroGPU."""
|
469 |
+
global model, retriever, metadata_db
|
470 |
|
471 |
+
if not model or not retriever:
|
472 |
+
return "β Please initialize PyLate and process documents first!"
|
473 |
|
474 |
+
if not query.strip():
|
475 |
+
return "β Please enter a search query!"
|
476 |
|
477 |
+
try:
|
478 |
+
# Encode query on GPU
|
479 |
+
query_embedding = model.encode([query], is_query=True)
|
480 |
|
481 |
+
# Search
|
482 |
+
results = retriever.retrieve(query_embedding, k=k)[0]
|
483 |
|
484 |
+
if not results:
|
485 |
+
return "π No results found for your query.\n\nTry:\nβ’ Different keywords\nβ’ Broader search terms\nβ’ Check if documents were processed correctly"
|
486 |
|
487 |
+
# Format results with metadata
|
488 |
+
formatted_results = [f"π **Search Results for:** '{query}' (powered by ZeroGPU H200)\n"]
|
489 |
|
490 |
+
for i, result in enumerate(results):
|
491 |
+
doc_id = result['id']
|
492 |
+
score = result['score']
|
493 |
|
494 |
+
# Get metadata
|
495 |
+
metadata = get_document_metadata(doc_id)
|
496 |
|
497 |
+
formatted_results.append(f"## Result {i+1} (Relevance: {score:.3f})")
|
498 |
+
formatted_results.append(
|
499 |
+
f"**π File:** {metadata.get('filename', 'Unknown')}")
|
500 |
+
formatted_results.append(
|
501 |
+
f"**π Chunk:** {metadata.get('chunk_index', 0) + 1}/{metadata.get('total_chunks', 1)}")
|
502 |
|
503 |
+
if show_chunks:
|
504 |
+
text = metadata.get('original_text', '')
|
505 |
+
if len(text) > 400:
|
506 |
+
preview = text[:400] + "..."
|
507 |
+
else:
|
508 |
+
preview = text
|
509 |
+
formatted_results.append(f"**π¬ Text:** {preview}")
|
510 |
|
511 |
+
formatted_results.append("---")
|
512 |
|
513 |
+
formatted_results.append(f"\nπ― Found {len(results)} relevant results using ColBERT semantic search")
|
514 |
+
return "\n".join(formatted_results)
|
515 |
|
516 |
+
except Exception as e:
|
517 |
+
return f"β Error searching: {str(e)}\n\nPlease try again or check if PyLate is properly initialized."
|
518 |
|
519 |
# ===== GRADIO INTERFACE =====
|
520 |
|
521 |
def create_interface():
|
522 |
+
"""Create the Gradio interface for ZeroGPU."""
|
523 |
+
|
524 |
+
with gr.Blocks(title="PyLate ZeroGPU Document Search", theme=gr.themes.Soft()) as demo:
|
525 |
+
gr.Markdown("""
|
526 |
+
# π PyLate ZeroGPU Document Search
|
527 |
+
### Powered by ColBERT and NVIDIA H200 (70GB VRAM)
|
528 |
+
|
529 |
+
Upload documents, process them with PyLate on ZeroGPU, and perform lightning-fast semantic search!
|
530 |
+
|
531 |
+
**π₯ ZeroGPU Features:**
|
532 |
+
- π― NVIDIA H200 GPU with 70GB VRAM
|
533 |
+
- β‘ Dynamic GPU allocation (only when needed)
|
534 |
+
- π Free for HF Pro subscribers
|
535 |
+
- π Optimized for PyTorch/ColBERT workloads
|
536 |
+
- π Automatic package installation
|
537 |
+
""")
|
538 |
+
|
539 |
+
# Status indicator
|
540 |
+
with gr.Row():
|
541 |
+
gr.Markdown(f"""
|
542 |
+
**π System Status:**
|
543 |
+
- β
PyLate: Ready
|
544 |
+
- β
Document Processing: {"PDF β
" if fitz else "PDF β"} | {"DOCX β
" if docx else "DOCX β"} | TXT β
|
545 |
+
- β
ZeroGPU: Available
|
546 |
+
""")
|
547 |
+
|
548 |
+
with gr.Tab("π Setup"):
|
549 |
+
gr.Markdown("### Initialize PyLate System on ZeroGPU H200")
|
550 |
+
|
551 |
+
model_choice = gr.Dropdown(
|
552 |
+
choices=[
|
553 |
+
"colbert-ir/colbertv2.0",
|
554 |
+
"sentence-transformers/all-MiniLM-L6-v2"
|
555 |
+
],
|
556 |
+
value="colbert-ir/colbertv2.0",
|
557 |
+
label="Select ColBERT Model",
|
558 |
+
info="ColBERT v2.0 is recommended for best performance"
|
559 |
+
)
|
560 |
+
|
561 |
+
init_btn = gr.Button("π Initialize PyLate on ZeroGPU", variant="primary", size="lg")
|
562 |
+
init_status = gr.Textbox(label="Initialization Status", lines=6, max_lines=10)
|
563 |
+
|
564 |
+
init_btn.click(
|
565 |
+
initialize_pylate,
|
566 |
+
inputs=model_choice,
|
567 |
+
outputs=init_status
|
568 |
+
)
|
569 |
+
|
570 |
+
with gr.Tab("π Document Upload"):
|
571 |
+
gr.Markdown("### Upload and Process Documents on H200 GPU")
|
572 |
+
|
573 |
+
with gr.Row():
|
574 |
+
with gr.Column():
|
575 |
+
file_upload = gr.File(
|
576 |
+
file_count="multiple",
|
577 |
+
file_types=[".pdf", ".docx", ".txt"],
|
578 |
+
label="Upload Documents",
|
579 |
+
info="Supported: PDF, DOCX, TXT files"
|
580 |
+
)
|
581 |
+
|
582 |
+
with gr.Row():
|
583 |
+
chunk_size = gr.Slider(
|
584 |
+
minimum=500,
|
585 |
+
maximum=3000,
|
586 |
+
value=1000,
|
587 |
+
step=100,
|
588 |
+
label="Chunk Size (characters)",
|
589 |
+
info="Larger chunks = more context, smaller chunks = more precise"
|
590 |
+
)
|
591 |
+
|
592 |
+
overlap = gr.Slider(
|
593 |
+
minimum=0,
|
594 |
+
maximum=500,
|
595 |
+
value=100,
|
596 |
+
step=50,
|
597 |
+
label="Chunk Overlap (characters)",
|
598 |
+
info="Overlap helps maintain context between chunks"
|
599 |
+
)
|
600 |
+
|
601 |
+
process_btn = gr.Button(
|
602 |
+
"β‘ Process Documents on ZeroGPU", variant="primary", size="lg")
|
603 |
+
|
604 |
+
with gr.Column():
|
605 |
+
process_status = gr.Textbox(
|
606 |
+
label="Processing Status",
|
607 |
+
lines=15,
|
608 |
+
max_lines=20,
|
609 |
+
info="Processing status and results will appear here"
|
610 |
+
)
|
611 |
+
|
612 |
+
process_btn.click(
|
613 |
+
process_documents,
|
614 |
+
inputs=[file_upload, chunk_size, overlap],
|
615 |
+
outputs=process_status
|
616 |
+
)
|
617 |
+
|
618 |
+
with gr.Tab("π Search"):
|
619 |
+
gr.Markdown("### Search Your Documents with H200 Power")
|
620 |
+
|
621 |
+
with gr.Row():
|
622 |
+
with gr.Column():
|
623 |
+
search_query = gr.Textbox(
|
624 |
+
label="Search Query",
|
625 |
+
placeholder="Enter your search query... (e.g., 'machine learning algorithms', 'financial projections')",
|
626 |
+
lines=2,
|
627 |
+
info="Use natural language - ColBERT understands semantic meaning"
|
628 |
+
)
|
629 |
+
|
630 |
+
with gr.Row():
|
631 |
+
num_results = gr.Slider(
|
632 |
+
minimum=1,
|
633 |
+
maximum=20,
|
634 |
+
value=5,
|
635 |
+
step=1,
|
636 |
+
label="Number of Results",
|
637 |
+
info="How many relevant chunks to return"
|
638 |
+
)
|
639 |
+
|
640 |
+
show_chunks = gr.Checkbox(
|
641 |
+
value=True,
|
642 |
+
label="Show Text Chunks",
|
643 |
+
info="Display the actual text content"
|
644 |
+
)
|
645 |
+
|
646 |
+
search_btn = gr.Button("π Search with ZeroGPU", variant="primary", size="lg")
|
647 |
+
|
648 |
+
with gr.Column():
|
649 |
+
search_results = gr.Textbox(
|
650 |
+
label="Search Results",
|
651 |
+
lines=18,
|
652 |
+
max_lines=25,
|
653 |
+
info="Semantic search results will appear here"
|
654 |
+
)
|
655 |
+
|
656 |
+
search_btn.click(
|
657 |
+
search_documents,
|
658 |
+
inputs=[search_query, num_results, show_chunks],
|
659 |
+
outputs=search_results
|
660 |
+
)
|
661 |
+
|
662 |
+
with gr.Tab("βΉοΈ ZeroGPU Info"):
|
663 |
+
gr.Markdown("""
|
664 |
+
### About ZeroGPU PyLate Search
|
665 |
+
|
666 |
+
**π₯ Powered by NVIDIA H200 Tensor Core GPU**
|
667 |
+
|
668 |
+
#### π ZeroGPU Features:
|
669 |
+
- **70GB HBM3 Memory** - Massive capacity for large document collections
|
670 |
+
- **Dynamic Allocation** - GPU assigned only when functions need it
|
671 |
+
- **Optimized for PyTorch** - Perfect for ColBERT/PyLate workloads
|
672 |
+
- **Free for Pro Users** - No additional charges beyond HF Pro
|
673 |
+
- **Auto Scaling** - Efficient resource usage and queue management
|
674 |
+
|
675 |
+
#### π§ How ColBERT Works:
|
676 |
+
1. **Late Interaction** - Processes queries and documents separately
|
677 |
+
2. **Token-level Matching** - Fine-grained semantic understanding
|
678 |
+
3. **Efficient Retrieval** - Fast search with high-quality results
|
679 |
+
4. **GPU Acceleration** - Leverages H200 for rapid inference
|
680 |
+
|
681 |
+
#### π Performance Benefits:
|
682 |
+
- **10-100x faster** than CPU-based search
|
683 |
+
- **Large batch processing** - 32+ documents simultaneously
|
684 |
+
- **Real-time search** - Sub-second query responses
|
685 |
+
- **Massive scale** - 70GB VRAM handles huge document sets
|
686 |
+
|
687 |
+
#### π οΏ½οΏ½ Technical Details:
|
688 |
+
- **Runtime Package Installation** - Automatically installs dependencies
|
689 |
+
- **Gradio SDK Required** - ZeroGPU doesn't support Docker
|
690 |
+
- **Smart Chunking** - Intelligent text segmentation with overlap
|
691 |
+
- **Metadata Tracking** - SQLite database for chunk information
|
692 |
+
|
693 |
+
#### π― Usage Tips:
|
694 |
+
1. **Initialize first** - Required before processing documents
|
695 |
+
2. **Natural language queries** - ColBERT understands meaning, not just keywords
|
696 |
+
3. **Adjust chunk size** - Larger for context, smaller for precision
|
697 |
+
4. **Multiple file types** - Mix PDFs, DOCX, and TXT files
|
698 |
+
5. **Semantic search** - Try "concepts similar to X" type queries
|
699 |
+
|
700 |
+
#### π Privacy & Security:
|
701 |
+
- Documents processed in-memory only
|
702 |
+
- No permanent storage of your content
|
703 |
+
- Processing happens on HF infrastructure
|
704 |
+
- Automatic cleanup after session ends
|
705 |
+
|
706 |
+
---
|
707 |
+
|
708 |
+
**Built with β€οΈ using:**
|
709 |
+
- π€ PyLate & ColBERT for semantic search
|
710 |
+
- β‘ ZeroGPU H200 for GPU acceleration
|
711 |
+
- π¨ Gradio for the interface
|
712 |
+
- π Python ecosystem for document processing
|
713 |
+
""")
|
714 |
+
|
715 |
+
return demo
|
716 |
|
717 |
# ===== MAIN =====
|
718 |
|
719 |
if __name__ == "__main__":
|
720 |
+
print("π Launching PyLate ZeroGPU Document Search interface...")
|
721 |
+
|
722 |
+
# Check if running on ZeroGPU
|
723 |
+
if torch.cuda.is_available():
|
724 |
+
print(f"π₯ GPU detected: {torch.cuda.get_device_name()}")
|
725 |
+
else:
|
726 |
+
print("π» Running on CPU (GPU will be allocated when @spaces.GPU functions are called)")
|
727 |
+
|
728 |
+
demo = create_interface()
|
729 |
+
demo.launch(
|
730 |
+
share=False,
|
731 |
+
server_name="0.0.0.0",
|
732 |
+
server_port=7860,
|
733 |
+
show_error=True
|
734 |
+
)
|