Spaces:
Runtime error
Runtime error
File size: 24,072 Bytes
ad552d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 |
import os
import random
from tqdm.auto import tqdm
from glob import glob
import torch
import numpy as np
from PIL import Image
from scipy import linalg
import zipfile
from torch.hub import get_dir
from .utils import *
from .features import build_feature_extractor, get_reference_statistics
from .resize import *
"""
Numpy implementation of the Frechet Distance.
The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1)
and X_2 ~ N(mu_2, C_2) is
d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)).
Stable version by Danica J. Sutherland.
Params:
mu1 : Numpy array containing the activations of a layer of the
inception net (like returned by the function 'get_predictions')
for generated samples.
mu2 : The sample mean over activations, precalculated on an
representative data set.
sigma1: The covariance matrix over activations for generated samples.
sigma2: The covariance matrix over activations, precalculated on an
representative data set.
"""
def frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6):
mu1 = np.atleast_1d(mu1)
mu2 = np.atleast_1d(mu2)
sigma1 = np.atleast_2d(sigma1)
sigma2 = np.atleast_2d(sigma2)
assert (
mu1.shape == mu2.shape
), "Training and test mean vectors have different lengths"
assert (
sigma1.shape == sigma2.shape
), "Training and test covariances have different dimensions"
diff = mu1 - mu2
# Product might be almost singular
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
if not np.isfinite(covmean).all():
msg = (
"fid calculation produces singular product; "
"adding %s to diagonal of cov estimates"
) % eps
print(msg)
offset = np.eye(sigma1.shape[0]) * eps
covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))
# Numerical error might give slight imaginary component
if np.iscomplexobj(covmean):
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
m = np.max(np.abs(covmean.imag))
raise ValueError("Imaginary component {}".format(m))
covmean = covmean.real
tr_covmean = np.trace(covmean)
return diff.dot(diff) + np.trace(sigma1) + np.trace(sigma2) - 2 * tr_covmean
"""
Compute the KID score given the sets of features
"""
def kernel_distance(feats1, feats2, num_subsets=100, max_subset_size=1000):
n = feats1.shape[1]
m = min(min(feats1.shape[0], feats2.shape[0]), max_subset_size)
t = 0
for _subset_idx in range(num_subsets):
x = feats2[np.random.choice(feats2.shape[0], m, replace=False)]
y = feats1[np.random.choice(feats1.shape[0], m, replace=False)]
a = (x @ x.T / n + 1) ** 3 + (y @ y.T / n + 1) ** 3
b = (x @ y.T / n + 1) ** 3
t += (a.sum() - np.diag(a).sum()) / (m - 1) - b.sum() * 2 / m
kid = t / num_subsets / m
return float(kid)
"""
Compute the inception features for a batch of images
"""
def get_batch_features(batch, model, device):
with torch.no_grad():
feat = model(batch.to(device))
return feat.detach().cpu().numpy()
"""
Compute the inception features for a list of files
"""
def get_files_features(
l_files,
model=None,
num_workers=12,
batch_size=128,
device=torch.device("cuda"),
mode="clean",
custom_fn_resize=None,
description="",
fdir=None,
verbose=True,
custom_image_tranform=None,
):
# wrap the images in a dataloader for parallelizing the resize operation
dataset = ResizeDataset(l_files, fdir=fdir, mode=mode)
if custom_image_tranform is not None:
dataset.custom_image_tranform = custom_image_tranform
if custom_fn_resize is not None:
dataset.fn_resize = custom_fn_resize
dataloader = torch.utils.data.DataLoader(
dataset,
batch_size=batch_size,
shuffle=False,
drop_last=False,
num_workers=num_workers,
)
# collect all inception features
l_feats = []
if verbose:
pbar = tqdm(dataloader, desc=description)
else:
pbar = dataloader
for batch in pbar:
l_feats.append(get_batch_features(batch, model, device))
np_feats = np.concatenate(l_feats)
return np_feats
"""
Compute the inception features for a folder of image files
"""
def get_folder_features(
fdir,
model=None,
num_workers=12,
num=None,
shuffle=False,
seed=0,
batch_size=128,
device=torch.device("cuda"),
mode="clean",
custom_fn_resize=None,
description="",
verbose=True,
custom_image_tranform=None,
):
# get all relevant files in the dataset
if ".zip" in fdir:
files = list(set(zipfile.ZipFile(fdir).namelist()))
# remove the non-image files inside the zip
files = [x for x in files if os.path.splitext(x)[1].lower()[1:] in EXTENSIONS]
else:
files = sorted(
[
file
for ext in EXTENSIONS
for file in glob(os.path.join(fdir, f"**/*.{ext}"), recursive=True)
]
)
# use a subset number of files if needed
if num is not None:
if shuffle:
random.seed(seed)
random.shuffle(files)
files = files[:num]
np_feats = get_files_features(
files,
model,
num_workers=num_workers,
batch_size=batch_size,
device=device,
mode=mode,
custom_fn_resize=custom_fn_resize,
custom_image_tranform=custom_image_tranform,
description=description,
fdir=fdir,
verbose=verbose,
)
return np_feats
"""
Compute the FID score given the inception features stack
"""
def fid_from_feats(feats1, feats2):
mu1, sig1 = np.mean(feats1, axis=0), np.cov(feats1, rowvar=False)
mu2, sig2 = np.mean(feats2, axis=0), np.cov(feats2, rowvar=False)
return frechet_distance(mu1, sig1, mu2, sig2)
"""
Computes the FID score for a folder of images for a specific dataset
and a specific resolution
"""
def fid_folder(
fdir,
dataset_name,
dataset_res,
dataset_split,
model=None,
mode="clean",
model_name="inception_v3",
num_workers=12,
batch_size=128,
device=torch.device("cuda"),
verbose=True,
custom_image_tranform=None,
custom_fn_resize=None,
):
# Load reference FID statistics (download if needed)
ref_mu, ref_sigma = get_reference_statistics(
dataset_name,
dataset_res,
mode=mode,
model_name=model_name,
seed=0,
split=dataset_split,
)
fbname = os.path.basename(fdir)
# get all inception features for folder images
np_feats = get_folder_features(
fdir,
model,
num_workers=num_workers,
batch_size=batch_size,
device=device,
mode=mode,
description=f"FID {fbname} : ",
verbose=verbose,
custom_image_tranform=custom_image_tranform,
custom_fn_resize=custom_fn_resize,
)
mu = np.mean(np_feats, axis=0)
sigma = np.cov(np_feats, rowvar=False)
fid = frechet_distance(mu, sigma, ref_mu, ref_sigma)
return fid
"""
Compute the FID stats from a generator model
"""
def get_model_features(
G,
model,
mode="clean",
z_dim=512,
num_gen=50_000,
batch_size=128,
device=torch.device("cuda"),
desc="FID model: ",
verbose=True,
return_z=False,
custom_image_tranform=None,
custom_fn_resize=None,
):
if custom_fn_resize is None:
fn_resize = build_resizer(mode)
else:
fn_resize = custom_fn_resize
# Generate test features
num_iters = int(np.ceil(num_gen / batch_size))
l_feats = []
latents = []
if verbose:
pbar = tqdm(range(num_iters), desc=desc)
else:
pbar = range(num_iters)
for idx in pbar:
with torch.no_grad():
z_batch = torch.randn((batch_size, z_dim)).to(device)
if return_z:
latents.append(z_batch)
# generated image is in range [0,255]
img_batch = G(z_batch)
# split into individual batches for resizing if needed
if mode != "legacy_tensorflow":
l_resized_batch = []
for idx in range(batch_size):
curr_img = img_batch[idx]
img_np = curr_img.cpu().numpy().transpose((1, 2, 0))
if custom_image_tranform is not None:
img_np = custom_image_tranform(img_np)
img_resize = fn_resize(img_np)
l_resized_batch.append(
torch.tensor(img_resize.transpose((2, 0, 1))).unsqueeze(0)
)
resized_batch = torch.cat(l_resized_batch, dim=0)
else:
resized_batch = img_batch
feat = get_batch_features(resized_batch, model, device)
l_feats.append(feat)
np_feats = np.concatenate(l_feats)[:num_gen]
if return_z:
latents = torch.cat(latents, 0)
return np_feats, latents
return np_feats
"""
Computes the FID score for a generator model for a specific dataset
and a specific resolution
"""
def fid_model(
G,
dataset_name,
dataset_res,
dataset_split,
model=None,
model_name="inception_v3",
z_dim=512,
num_gen=50_000,
mode="clean",
num_workers=0,
batch_size=128,
device=torch.device("cuda"),
verbose=True,
custom_image_tranform=None,
custom_fn_resize=None,
):
# Load reference FID statistics (download if needed)
ref_mu, ref_sigma = get_reference_statistics(
dataset_name,
dataset_res,
mode=mode,
model_name=model_name,
seed=0,
split=dataset_split,
)
# Generate features of images generated by the model
np_feats = get_model_features(
G,
model,
mode=mode,
z_dim=z_dim,
num_gen=num_gen,
batch_size=batch_size,
device=device,
verbose=verbose,
custom_image_tranform=custom_image_tranform,
custom_fn_resize=custom_fn_resize,
)
mu = np.mean(np_feats, axis=0)
sigma = np.cov(np_feats, rowvar=False)
fid = frechet_distance(mu, sigma, ref_mu, ref_sigma)
return fid
"""
Computes the FID score between the two given folders
"""
def compare_folders(
fdir1,
fdir2,
feat_model,
mode,
num_workers=0,
batch_size=8,
device=torch.device("cuda"),
verbose=True,
custom_image_tranform=None,
custom_fn_resize=None,
):
# get all inception features for the first folder
fbname1 = os.path.basename(fdir1)
np_feats1 = get_folder_features(
fdir1,
feat_model,
num_workers=num_workers,
batch_size=batch_size,
device=device,
mode=mode,
description=f"FID {fbname1} : ",
verbose=verbose,
custom_image_tranform=custom_image_tranform,
custom_fn_resize=custom_fn_resize,
)
mu1 = np.mean(np_feats1, axis=0)
sigma1 = np.cov(np_feats1, rowvar=False)
# get all inception features for the second folder
fbname2 = os.path.basename(fdir2)
np_feats2 = get_folder_features(
fdir2,
feat_model,
num_workers=num_workers,
batch_size=batch_size,
device=device,
mode=mode,
description=f"FID {fbname2} : ",
verbose=verbose,
custom_image_tranform=custom_image_tranform,
custom_fn_resize=custom_fn_resize,
)
mu2 = np.mean(np_feats2, axis=0)
sigma2 = np.cov(np_feats2, rowvar=False)
fid = frechet_distance(mu1, sigma1, mu2, sigma2)
return fid
"""
Test if a custom statistic exists
"""
def test_stats_exists(name, mode, model_name="inception_v3", metric="FID"):
stats_folder = os.path.join(get_dir(), "fid_stats")
split, res = "custom", "na"
if model_name == "inception_v3":
model_modifier = ""
else:
model_modifier = "_" + model_name
if metric == "FID":
fname = f"{name}_{mode}{model_modifier}_{split}_{res}.npz"
elif metric == "KID":
fname = f"{name}_{mode}{model_modifier}_{split}_{res}_kid.npz"
fpath = os.path.join(stats_folder, fname)
return os.path.exists(fpath)
"""
Remove the custom FID features from the stats folder
"""
def remove_custom_stats(name, mode="clean", model_name="inception_v3"):
stats_folder = os.path.join(get_dir(), "fid_stats")
# remove the FID stats
split, res = "custom", "na"
if model_name == "inception_v3":
model_modifier = ""
else:
model_modifier = "_" + model_name
outf = os.path.join(
stats_folder, f"{name}_{mode}{model_modifier}_{split}_{res}.npz"
)
if not os.path.exists(outf):
msg = f"The stats file {name} does not exist."
raise Exception(msg)
os.remove(outf)
# remove the KID stats
outf = os.path.join(
stats_folder, f"{name}_{mode}{model_modifier}_{split}_{res}_kid.npz"
)
if not os.path.exists(outf):
msg = f"The stats file {name} does not exist."
raise Exception(msg)
os.remove(outf)
"""
Cache a custom dataset statistics file
"""
def make_custom_stats(
name,
fdir,
num=None,
mode="clean",
model_name="inception_v3",
num_workers=0,
batch_size=64,
device=torch.device("cuda"),
verbose=True,
):
stats_folder = os.path.join(get_dir(), "fid_stats")
os.makedirs(stats_folder, exist_ok=True)
split, res = "custom", "na"
if model_name == "inception_v3":
model_modifier = ""
else:
model_modifier = "_" + model_name
outf = os.path.join(
stats_folder, f"{name}_{mode}{model_modifier}_{split}_{res}.npz"
)
# if the custom stat file already exists
if os.path.exists(outf):
msg = f"The statistics file {name} already exists. "
msg += "Use remove_custom_stats function to delete it first."
raise Exception(msg)
if model_name == "inception_v3":
feat_model = build_feature_extractor(mode, device)
custom_fn_resize = None
custom_image_tranform = None
elif model_name == "clip_vit_b_32":
from .clip_features import CLIP_fx, img_preprocess_clip
clip_fx = CLIP_fx("ViT-B/32")
feat_model = clip_fx
custom_fn_resize = img_preprocess_clip
custom_image_tranform = None
else:
raise ValueError(f"The entered model name - {model_name} was not recognized.")
# get all inception features for folder images
np_feats = get_folder_features(
fdir,
feat_model,
num_workers=num_workers,
num=num,
batch_size=batch_size,
device=device,
verbose=verbose,
mode=mode,
description=f"custom stats: {os.path.basename(fdir)} : ",
custom_image_tranform=custom_image_tranform,
custom_fn_resize=custom_fn_resize,
)
mu = np.mean(np_feats, axis=0)
sigma = np.cov(np_feats, rowvar=False)
# print(f"saving custom FID stats to {outf}")
np.savez_compressed(outf, mu=mu, sigma=sigma)
# KID stats
outf = os.path.join(
stats_folder, f"{name}_{mode}{model_modifier}_{split}_{res}_kid.npz"
)
# print(f"saving custom KID stats to {outf}")
np.savez_compressed(outf, feats=np_feats)
def compute_kid(
fdir1=None,
fdir2=None,
gen=None,
mode="clean",
num_workers=12,
batch_size=32,
device=torch.device("cuda"),
dataset_name="FFHQ",
dataset_res=1024,
dataset_split="train",
num_gen=50_000,
z_dim=512,
verbose=True,
use_dataparallel=True,
):
# build the feature extractor based on the mode
feat_model = build_feature_extractor(
mode, device, use_dataparallel=use_dataparallel
)
# if both dirs are specified, compute KID between folders
if fdir1 is not None and fdir2 is not None:
# get all inception features for the first folder
fbname1 = os.path.basename(fdir1)
np_feats1 = get_folder_features(
fdir1,
feat_model,
num_workers=num_workers,
batch_size=batch_size,
device=device,
mode=mode,
description=f"KID {fbname1} : ",
verbose=verbose,
)
# get all inception features for the second folder
fbname2 = os.path.basename(fdir2)
np_feats2 = get_folder_features(
fdir2,
feat_model,
num_workers=num_workers,
batch_size=batch_size,
device=device,
mode=mode,
description=f"KID {fbname2} : ",
verbose=verbose,
)
score = kernel_distance(np_feats1, np_feats2)
return score
# compute kid of a folder
elif fdir1 is not None and fdir2 is None:
if verbose:
print(f"compute KID of a folder with {dataset_name} statistics")
ref_feats = get_reference_statistics(
dataset_name,
dataset_res,
mode=mode,
seed=0,
split=dataset_split,
metric="KID",
)
fbname = os.path.basename(fdir1)
# get all inception features for folder images
np_feats = get_folder_features(
fdir1,
feat_model,
num_workers=num_workers,
batch_size=batch_size,
device=device,
mode=mode,
description=f"KID {fbname} : ",
verbose=verbose,
)
score = kernel_distance(ref_feats, np_feats)
return score
# compute kid for a generator, using images in fdir2
elif gen is not None and fdir2 is not None:
if verbose:
print(f"compute KID of a model, using references in fdir2")
# get all inception features for the second folder
fbname2 = os.path.basename(fdir2)
ref_feats = get_folder_features(
fdir2,
feat_model,
num_workers=num_workers,
batch_size=batch_size,
device=device,
mode=mode,
description=f"KID {fbname2} : ",
)
# Generate test features
np_feats = get_model_features(
gen,
feat_model,
mode=mode,
z_dim=z_dim,
num_gen=num_gen,
desc="KID model: ",
batch_size=batch_size,
device=device,
)
score = kernel_distance(ref_feats, np_feats)
return score
# compute fid for a generator, using reference statistics
elif gen is not None:
if verbose:
print(
f"compute KID of a model with {dataset_name}-{dataset_res} statistics"
)
ref_feats = get_reference_statistics(
dataset_name,
dataset_res,
mode=mode,
seed=0,
split=dataset_split,
metric="KID",
)
# Generate test features
np_feats = get_model_features(
gen,
feat_model,
mode=mode,
z_dim=z_dim,
num_gen=num_gen,
desc="KID model: ",
batch_size=batch_size,
device=device,
verbose=verbose,
)
score = kernel_distance(ref_feats, np_feats)
return score
else:
raise ValueError("invalid combination of directories and models entered")
"""
custom_image_tranform:
function that takes an np_array image as input [0,255] and
applies a custom transform such as cropping
"""
def compute_fid(
fdir1=None,
fdir2=None,
gen=None,
mode="clean",
model_name="inception_v3",
num_workers=12,
batch_size=32,
device=torch.device("cuda"),
dataset_name="FFHQ",
dataset_res=1024,
dataset_split="train",
num_gen=50_000,
z_dim=512,
custom_feat_extractor=None,
verbose=True,
custom_image_tranform=None,
custom_fn_resize=None,
use_dataparallel=True,
):
# build the feature extractor based on the mode and the model to be used
if custom_feat_extractor is None and model_name == "inception_v3":
feat_model = build_feature_extractor(
mode, device, use_dataparallel=use_dataparallel
)
elif custom_feat_extractor is None and model_name == "clip_vit_b_32":
from .clip_features import CLIP_fx, img_preprocess_clip
clip_fx = CLIP_fx("ViT-B/32", device=device)
feat_model = clip_fx
custom_fn_resize = img_preprocess_clip
else:
feat_model = custom_feat_extractor
# if both dirs are specified, compute FID between folders
if fdir1 is not None and fdir2 is not None:
score = compare_folders(
fdir1,
fdir2,
feat_model,
mode=mode,
batch_size=batch_size,
num_workers=num_workers,
device=device,
custom_image_tranform=custom_image_tranform,
custom_fn_resize=custom_fn_resize,
verbose=verbose,
)
return score
# compute fid of a folder
elif fdir1 is not None and fdir2 is None:
if verbose:
print(f"compute FID of a folder with {dataset_name} statistics")
score = fid_folder(
fdir1,
dataset_name,
dataset_res,
dataset_split,
model=feat_model,
mode=mode,
model_name=model_name,
custom_fn_resize=custom_fn_resize,
custom_image_tranform=custom_image_tranform,
num_workers=num_workers,
batch_size=batch_size,
device=device,
verbose=verbose,
)
return score
# compute fid for a generator, using images in fdir2
elif gen is not None and fdir2 is not None:
if verbose:
print(f"compute FID of a model, using references in fdir2")
# get all inception features for the second folder
fbname2 = os.path.basename(fdir2)
np_feats2 = get_folder_features(
fdir2,
feat_model,
num_workers=num_workers,
batch_size=batch_size,
device=device,
mode=mode,
description=f"FID {fbname2} : ",
verbose=verbose,
custom_fn_resize=custom_fn_resize,
custom_image_tranform=custom_image_tranform,
)
mu2 = np.mean(np_feats2, axis=0)
sigma2 = np.cov(np_feats2, rowvar=False)
# Generate test features
np_feats = get_model_features(
gen,
feat_model,
mode=mode,
z_dim=z_dim,
num_gen=num_gen,
custom_fn_resize=custom_fn_resize,
custom_image_tranform=custom_image_tranform,
batch_size=batch_size,
device=device,
verbose=verbose,
)
mu = np.mean(np_feats, axis=0)
sigma = np.cov(np_feats, rowvar=False)
fid = frechet_distance(mu, sigma, mu2, sigma2)
return fid
# compute fid for a generator, using reference statistics
elif gen is not None:
if verbose:
print(
f"compute FID of a model with {dataset_name}-{dataset_res} statistics"
)
score = fid_model(
gen,
dataset_name,
dataset_res,
dataset_split,
model=feat_model,
model_name=model_name,
z_dim=z_dim,
num_gen=num_gen,
mode=mode,
num_workers=num_workers,
batch_size=batch_size,
custom_image_tranform=custom_image_tranform,
custom_fn_resize=custom_fn_resize,
device=device,
verbose=verbose,
)
return score
else:
raise ValueError("invalid combination of directories and models entered")
|