File size: 3,459 Bytes
ad552d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
"""
Helpers for resizing with multiple CPU cores
"""
import os
import numpy as np
import torch
from PIL import Image
import torch.nn.functional as F


def build_resizer(mode):
    if mode == "clean":
        return make_resizer("PIL", False, "bicubic", (299, 299))
    # if using legacy tensorflow, do not manually resize outside the network
    elif mode == "legacy_tensorflow":
        return lambda x: x
    elif mode == "legacy_pytorch":
        return make_resizer("PyTorch", False, "bilinear", (299, 299))
    else:
        raise ValueError(f"Invalid mode {mode} specified")


"""
Construct a function that resizes a numpy image based on the
flags passed in.
"""


def make_resizer(library, quantize_after, filter, output_size):
    if library == "PIL" and quantize_after:
        name_to_filter = {
            "bicubic": Image.BICUBIC,
            "bilinear": Image.BILINEAR,
            "nearest": Image.NEAREST,
            "lanczos": Image.LANCZOS,
            "box": Image.BOX,
        }

        def func(x):
            x = Image.fromarray(x)
            x = x.resize(output_size, resample=name_to_filter[filter])
            x = np.asarray(x).clip(0, 255).astype(np.uint8)
            return x

    elif library == "PIL" and not quantize_after:
        name_to_filter = {
            "bicubic": Image.BICUBIC,
            "bilinear": Image.BILINEAR,
            "nearest": Image.NEAREST,
            "lanczos": Image.LANCZOS,
            "box": Image.BOX,
        }
        s1, s2 = output_size

        def resize_single_channel(x_np):
            img = Image.fromarray(x_np.astype(np.float32), mode="F")
            img = img.resize(output_size, resample=name_to_filter[filter])
            return np.asarray(img).clip(0, 255).reshape(s2, s1, 1)

        def func(x):
            x = [resize_single_channel(x[:, :, idx]) for idx in range(3)]
            x = np.concatenate(x, axis=2).astype(np.float32)
            return x

    elif library == "PyTorch":
        import warnings

        # ignore the numpy warnings
        warnings.filterwarnings("ignore")

        def func(x):
            x = torch.Tensor(x.transpose((2, 0, 1)))[None, ...]
            x = F.interpolate(x, size=output_size, mode=filter, align_corners=False)
            x = x[0, ...].cpu().data.numpy().transpose((1, 2, 0)).clip(0, 255)
            if quantize_after:
                x = x.astype(np.uint8)
            return x

    else:
        raise NotImplementedError("library [%s] is not include" % library)
    return func


class FolderResizer(torch.utils.data.Dataset):
    def __init__(self, files, outpath, fn_resize, output_ext=".png"):
        self.files = files
        self.outpath = outpath
        self.output_ext = output_ext
        self.fn_resize = fn_resize

    def __len__(self):
        return len(self.files)

    def __getitem__(self, i):
        path = str(self.files[i])
        img_np = np.asarray(Image.open(path))
        img_resize_np = self.fn_resize(img_np)
        # swap the output extension
        basename = os.path.basename(path).split(".")[0] + self.output_ext
        outname = os.path.join(self.outpath, basename)
        if self.output_ext == ".npy":
            np.save(outname, img_resize_np)
        elif self.output_ext == ".png":
            img_resized_pil = Image.fromarray(img_resize_np)
            img_resized_pil.save(outname)
        else:
            raise ValueError("invalid output extension")
        return 0