Spaces:
Runtime error
Runtime error
File size: 11,530 Bytes
ad552d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 |
from __future__ import absolute_import
import torch
import torch.nn as nn
from torch.autograd import Variable
import warnings
from . import pretrained_networks as pn
from .utils import normalize_tensor, l2, dssim, tensor2np, tensor2tensorlab, tensor2im
def spatial_average(in_tens, keepdim=True):
return in_tens.mean([2, 3], keepdim=keepdim)
def upsample(in_tens, out_HW=(64, 64)): # assumes scale factor is same for H and W
in_H, in_W = in_tens.shape[2], in_tens.shape[3]
return nn.Upsample(size=out_HW, mode="bilinear", align_corners=False)(in_tens)
# Learned perceptual metric
class LPIPS(nn.Module):
def __init__(
self,
pretrained=True,
net="alex",
version="0.1",
lpips=True,
spatial=False,
pnet_rand=False,
pnet_tune=False,
use_dropout=True,
model_path=None,
eval_mode=True,
verbose=True,
):
"""Initializes a perceptual loss torch.nn.Module
Parameters (default listed first)
---------------------------------
lpips : bool
[True] use linear layers on top of base/trunk network
[False] means no linear layers; each layer is averaged together
pretrained : bool
This flag controls the linear layers, which are only in effect when lpips=True above
[True] means linear layers are calibrated with human perceptual judgments
[False] means linear layers are randomly initialized
pnet_rand : bool
[False] means trunk loaded with ImageNet classification weights
[True] means randomly initialized trunk
net : str
['alex','vgg','squeeze'] are the base/trunk networks available
version : str
['v0.1'] is the default and latest
['v0.0'] contained a normalization bug; corresponds to old arxiv v1 (https://arxiv.org/abs/1801.03924v1)
model_path : 'str'
[None] is default and loads the pretrained weights from paper https://arxiv.org/abs/1801.03924v1
The following parameters should only be changed if training the network
eval_mode : bool
[True] is for test mode (default)
[False] is for training mode
pnet_tune
[False] keep base/trunk frozen
[True] tune the base/trunk network
use_dropout : bool
[True] to use dropout when training linear layers
[False] for no dropout when training linear layers
"""
super(LPIPS, self).__init__()
warnings.filterwarnings("ignore")
if verbose:
pass
# print(
# "Setting up [%s] perceptual loss: trunk [%s], v[%s], spatial [%s]"
# % (
# "LPIPS" if lpips else "baseline",
# net,
# version,
# "on" if spatial else "off",
# )
# )
self.pnet_type = net
self.pnet_tune = pnet_tune
self.pnet_rand = pnet_rand
self.spatial = spatial
self.lpips = lpips # false means baseline of just averaging all layers
self.version = version
self.scaling_layer = ScalingLayer()
if self.pnet_type in ["vgg", "vgg16"]:
net_type = pn.vgg16
self.chns = [64, 128, 256, 512, 512]
elif self.pnet_type == "alex":
net_type = pn.alexnet
self.chns = [64, 192, 384, 256, 256]
elif self.pnet_type == "squeeze":
net_type = pn.squeezenet
self.chns = [64, 128, 256, 384, 384, 512, 512]
self.L = len(self.chns)
self.net = net_type(pretrained=not self.pnet_rand, requires_grad=self.pnet_tune)
if lpips:
self.lin0 = NetLinLayer(self.chns[0], use_dropout=use_dropout)
self.lin1 = NetLinLayer(self.chns[1], use_dropout=use_dropout)
self.lin2 = NetLinLayer(self.chns[2], use_dropout=use_dropout)
self.lin3 = NetLinLayer(self.chns[3], use_dropout=use_dropout)
self.lin4 = NetLinLayer(self.chns[4], use_dropout=use_dropout)
self.lins = [self.lin0, self.lin1, self.lin2, self.lin3, self.lin4]
if self.pnet_type == "squeeze": # 7 layers for squeezenet
self.lin5 = NetLinLayer(self.chns[5], use_dropout=use_dropout)
self.lin6 = NetLinLayer(self.chns[6], use_dropout=use_dropout)
self.lins += [self.lin5, self.lin6]
self.lins = nn.ModuleList(self.lins)
if pretrained:
if model_path is None:
import inspect
import os
model_path = os.path.abspath(
os.path.join(
inspect.getfile(self.__init__),
"..",
"weights/v%s/%s.pth" % (version, net),
)
)
if verbose:
pass
# print("Loading model from: %s" % model_path)
self.load_state_dict(
torch.load(model_path, map_location="cpu"), strict=False
)
if eval_mode:
self.eval()
def forward(self, in0, in1, retPerLayer=False, normalize=False):
if (
normalize
): # turn on this flag if input is [0,1] so it can be adjusted to [-1, +1]
in0 = 2 * in0 - 1
in1 = 2 * in1 - 1
# v0.0 - original release had a bug, where input was not scaled
in0_input, in1_input = (
(self.scaling_layer(in0), self.scaling_layer(in1))
if self.version == "0.1"
else (in0, in1)
)
outs0, outs1 = self.net.forward(in0_input), self.net.forward(in1_input)
feats0, feats1, diffs = {}, {}, {}
for kk in range(self.L):
feats0[kk], feats1[kk] = normalize_tensor(outs0[kk]), normalize_tensor(
outs1[kk]
)
diffs[kk] = (feats0[kk] - feats1[kk]) ** 2
if self.lpips:
if self.spatial:
res = [
upsample(self.lins[kk](diffs[kk]), out_HW=in0.shape[2:])
for kk in range(self.L)
]
else:
res = [
spatial_average(self.lins[kk](diffs[kk]), keepdim=True)
for kk in range(self.L)
]
else:
if self.spatial:
res = [
upsample(diffs[kk].sum(dim=1, keepdim=True), out_HW=in0.shape[2:])
for kk in range(self.L)
]
else:
res = [
spatial_average(diffs[kk].sum(dim=1, keepdim=True), keepdim=True)
for kk in range(self.L)
]
val = 0
for l in range(self.L):
val += res[l]
if retPerLayer:
return (val, res)
else:
return val
class ScalingLayer(nn.Module):
def __init__(self):
super(ScalingLayer, self).__init__()
self.register_buffer(
"shift", torch.Tensor([-0.030, -0.088, -0.188])[None, :, None, None]
)
self.register_buffer(
"scale", torch.Tensor([0.458, 0.448, 0.450])[None, :, None, None]
)
def forward(self, inp):
return (inp - self.shift) / self.scale
class NetLinLayer(nn.Module):
"""A single linear layer which does a 1x1 conv"""
def __init__(self, chn_in, chn_out=1, use_dropout=False):
super(NetLinLayer, self).__init__()
layers = (
[
nn.Dropout(),
]
if (use_dropout)
else []
)
layers += [
nn.Conv2d(chn_in, chn_out, 1, stride=1, padding=0, bias=False),
]
self.model = nn.Sequential(*layers)
def forward(self, x):
return self.model(x)
class Dist2LogitLayer(nn.Module):
"""takes 2 distances, puts through fc layers, spits out value between [0,1] (if use_sigmoid is True)"""
def __init__(self, chn_mid=32, use_sigmoid=True):
super(Dist2LogitLayer, self).__init__()
layers = [
nn.Conv2d(5, chn_mid, 1, stride=1, padding=0, bias=True),
]
layers += [
nn.LeakyReLU(0.2, True),
]
layers += [
nn.Conv2d(chn_mid, chn_mid, 1, stride=1, padding=0, bias=True),
]
layers += [
nn.LeakyReLU(0.2, True),
]
layers += [
nn.Conv2d(chn_mid, 1, 1, stride=1, padding=0, bias=True),
]
if use_sigmoid:
layers += [
nn.Sigmoid(),
]
self.model = nn.Sequential(*layers)
def forward(self, d0, d1, eps=0.1):
return self.model.forward(
torch.cat((d0, d1, d0 - d1, d0 / (d1 + eps), d1 / (d0 + eps)), dim=1)
)
class BCERankingLoss(nn.Module):
def __init__(self, chn_mid=32):
super(BCERankingLoss, self).__init__()
self.net = Dist2LogitLayer(chn_mid=chn_mid)
# self.parameters = list(self.net.parameters())
self.loss = torch.nn.BCELoss()
def forward(self, d0, d1, judge):
per = (judge + 1.0) / 2.0
self.logit = self.net.forward(d0, d1)
return self.loss(self.logit, per)
# L2, DSSIM metrics
class FakeNet(nn.Module):
def __init__(self, use_gpu=True, colorspace="Lab"):
super(FakeNet, self).__init__()
self.use_gpu = use_gpu
self.colorspace = colorspace
class L2(FakeNet):
def forward(self, in0, in1, retPerLayer=None):
assert in0.size()[0] == 1 # currently only supports batchSize 1
if self.colorspace == "RGB":
(N, C, X, Y) = in0.size()
value = torch.mean(
torch.mean(
torch.mean((in0 - in1) ** 2, dim=1).view(N, 1, X, Y), dim=2
).view(N, 1, 1, Y),
dim=3,
).view(N)
return value
elif self.colorspace == "Lab":
value = l2(
tensor2np(tensor2tensorlab(in0.data, to_norm=False)),
tensor2np(tensor2tensorlab(in1.data, to_norm=False)),
range=100.0,
).astype("float")
ret_var = Variable(torch.Tensor((value,)))
if self.use_gpu:
ret_var = ret_var.cuda()
return ret_var
class DSSIM(FakeNet):
def forward(self, in0, in1, retPerLayer=None):
assert in0.size()[0] == 1 # currently only supports batchSize 1
if self.colorspace == "RGB":
value = dssim(
1.0 * tensor2im(in0.data),
1.0 * tensor2im(in1.data),
range=255.0,
).astype("float")
elif self.colorspace == "Lab":
value = dssim(
tensor2np(tensor2tensorlab(in0.data, to_norm=False)),
tensor2np(tensor2tensorlab(in1.data, to_norm=False)),
range=100.0,
).astype("float")
ret_var = Variable(torch.Tensor((value,)))
if self.use_gpu:
ret_var = ret_var.cuda()
return ret_var
def print_network(net):
num_params = 0
for param in net.parameters():
num_params += param.numel()
print("Network", net)
print("Total number of parameters: %d" % num_params)
|