Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import timm
|
3 |
+
import numpy as np
|
4 |
+
import faiss
|
5 |
+
import pandas as pd
|
6 |
+
|
7 |
+
|
8 |
+
TITLE = "wd-eva02-large-tagger-v3-vector"
|
9 |
+
DESCRIPTION = """
|
10 |
+
[model](https://huggingface.co/SmilingWolf/wd-eva02-large-tagger-v3)
|
11 |
+
"""
|
12 |
+
|
13 |
+
model = timm.create_model(f"hf_hub:SmilingWolf/wd-eva02-large-tagger-v3", pretrained=True)
|
14 |
+
head = model.head.weight.data.cpu().numpy()
|
15 |
+
del model
|
16 |
+
df = pd.read_csv(f"https://huggingface.co/SmilingWolf/wd-eva02-large-tagger-v3/resolve/main/selected_tags.csv")
|
17 |
+
id2label = df["name"].to_dict()
|
18 |
+
label2id = {v:k for k,v in id2label.items()}
|
19 |
+
|
20 |
+
faiss.normalize_L2(head)
|
21 |
+
index = faiss.IndexFlatIP(head.shape[1])
|
22 |
+
index.add(head)
|
23 |
+
|
24 |
+
def predict(target_tag):
|
25 |
+
target_id = label2id[target_tag]
|
26 |
+
query = head[target_id:target_id+1]
|
27 |
+
k = 50
|
28 |
+
target_id = label2id[target_tag]
|
29 |
+
distances, indices = index.search(query, k)
|
30 |
+
return {id2label[indice]:distance for indice, distance in zip(indices[0], distances[0])}
|
31 |
+
|
32 |
+
demo = gr.Interface(
|
33 |
+
fn=predict,
|
34 |
+
inputs=[
|
35 |
+
gr.Dropdown(list(label2id.keys()), label="Target tag", value="otoko_no_ko"),
|
36 |
+
],
|
37 |
+
outputs=gr.Label(num_top_classes=50),
|
38 |
+
title=TITLE,
|
39 |
+
description=DESCRIPTION
|
40 |
+
)
|
41 |
+
|
42 |
+
demo.launch()
|