apolinario's picture
Add sample and bring back the steps slider
0abf9df
raw
history blame
2.21 kB
# !pip install diffusers
import torch
from diffusers import DDIMPipeline, DDPMPipeline, PNDMPipeline
from diffusers import DDIMScheduler, DDPMScheduler, PNDMScheduler
from diffusers import UNetUnconditionalModel
import gradio as gr
import PIL.Image
import numpy as np
import random
model_id = "google/ddpm-celebahq-256"
model = UNetUnconditionalModel.from_pretrained(model_id, subfolder="unet")
# load model and scheduler
ddpm_scheduler = DDPMScheduler.from_config(model_id, subfolder="scheduler")
ddpm_pipeline = DDPMPipeline(unet=model, scheduler=ddpm_scheduler)
ddim_scheduler = DDIMScheduler.from_config(model_id, subfolder="scheduler")
ddim_pipeline = DDIMPipeline(unet=model, scheduler=ddim_scheduler)
pndm_scheduler = PNDMScheduler.from_config(model_id, subfolder="scheduler")
pndm_pipeline = PNDMPipeline(unet=model, scheduler=pndm_scheduler)
# run pipeline in inference (sample random noise and denoise)
def predict(steps=100, seed=42,scheduler="ddim"):
torch.cuda.empty_cache()
generator = torch.manual_seed(seed)
if(scheduler == "ddim"):
image = ddim_pipeline(generator=generator, num_inference_steps=steps)["sample"]
elif(scheduler == "ddpm"):
image = ddpm_pipeline(generator=generator)["sample"]
elif(scheduler == "pndm"):
image = pndm_pipeline(generator=generator, num_inference_steps=steps)["sample"]
image_processed = image.cpu().permute(0, 2, 3, 1)
if scheduler == "pndm":
image_processed = (image_processed + 1.0) / 2
image_processed = torch.clamp(image_processed, 0.0, 1.0)
image_processed = image_processed * 255
else:
image_processed = (image_processed + 1.0) * 127.5
image_processed = image_processed.detach().numpy().astype(np.uint8)
return(PIL.Image.fromarray(image_processed[0]))
random_seed = random.randint(0, 2147483647)
gr.Interface(
predict,
inputs=[
gr.inputs.Slider(1, 100, label='Inference Steps', default=20, step=1),
gr.inputs.Slider(0, 2147483647, label='Seed', default=random_seed),
gr.inputs.Radio(["ddim", "ddpm", "pndm"], default="ddpm",label="Diffusion scheduler")
],
outputs=gr.Image(shape=[256,256], type="pil"),
).launch()