test_time_1.1 / app.py
fvancesco
update app, v1
1d0c5c9
raw
history blame
3.19 kB
import numpy as np
from transformers import pipeline
from transformers import AutoModelForMaskedLM, AutoTokenizer
import gradio as gr
import matplotlib.pyplot as plt
dates = []
dates.extend([f"18 {m}" for m in range(1,13)])
dates.extend([f"19 {m}" for m in range(1,13)])
dates.extend([f"20 {m}" for m in range(1,13)])
dates.extend([f"21 {m}" for m in range(1,13)])
months = [x.split(" ")[-1] for x in dates]
model_name = "fvancesco/tmp_date"
model = AutoModelForMaskedLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
model.eval()
pipe = pipeline('fill-mask', model=model, tokenizer=tokenizer, device=0)
last_mf_dict = None
def get_mf_dict(text):
# predictions
texts = []
for d in dates:
texts.append(f"{d} {text}")
tmp_preds = pipe(texts, top_k=50265)
preds = {}
for i in range(len(tmp_preds)):
preds[dates[i]] = tmp_preds[i]
# get preds summary (only top words)
top_n = 5 # top n for each prediction
most_freq_tokens = set()
for d in dates:
tmp = [t['token_str'] for t in preds[d][:top_n]]
most_freq_tokens.update(tmp)
token_prob = {}
for d in dates:
token_prob[d] = {p['token_str']:p['score'] for p in preds[d]}
mf_dict = {p:np.zeros(len(dates)) for p in most_freq_tokens}
c=0
for d in dates:
for t in most_freq_tokens:
mf_dict[t][c] = token_prob[d][t]
c+=1
return mf_dict
def plot_time(text):
mf_dict = get_mf_dict(text)
#last_mf_dict = mf_dict # just for debugging, remove in final version
#max_tokens = 10
fig = plt.figure(figsize=(16,9))
ax = fig.add_subplot(111)
#fig, ax = plt.subplots(figsize=(16,9))
x = [i for i in range(len(dates))]
ax.set_xlabel('Month')
ax.set_xlim(0)
ax.set_xticks(x)
ax.set_xticklabels(months)
# ax.set_yticks([-1,0,1])
ax2 = ax.twiny()
ax2.set_xlabel('Year')
ax2.set_xlim(0)
ax2.set_xticks([0,12,24,36,47])
ax2.set_xticklabels('')
ax2.set_xticks([6,18,30,42,47], minor=True)
ax2.set_xticklabels(['2018','2019','2020','2021',''], minor=True)
ax2.grid()
# plot lines
for k in mf_dict.keys():
ax.plot(x, mf_dict[k], label = k)
# k = list(mf_dict.keys())
# for i in range(max_tokens):
# ax.plot(x, mf_dict[k[i]], label = k[i])
ax.legend(loc='center left', bbox_to_anchor=(1.0, 0.5))
return fig
def add_mask(text):
out = ""
if len(text) == 0 or text[-1] == " ":
out = text+"<mask>"
else:
out = text+" <mask>"
return out
with gr.Blocks() as demo:
#textbox = gr.Textbox(placeholder="Type here and press enter...")
textbox = gr.Textbox(value="Happy <mask>!", max_lines=1)
with gr.Row():
generate_btn = gr.Button("Generate Plot")
mask_btn = gr.Button("Add <mask>")
plot = gr.Plot()
#textbox.change(fn=plot_time, inputs=textbox, outputs=plot)
#textbox.click(fn=plot_time, inputs=textbox, outputs=plot)
generate_btn.click(fn=plot_time, inputs=textbox, outputs=plot)
mask_btn.click(fn=add_mask, inputs=textbox, outputs=textbox)
demo.launch(debug=True)