from dataclasses import dataclass from enum import Enum @dataclass class Task: benchmark: str metric: str col_name: str # Select your tasks here # --------------------------------------------------- class Tasks(Enum): # task_key in the json file, metric_key in the json file, name to display in the leaderboard task0 = Task("metric1", "acc", "Metric1") task1 = Task("metric2", "acc_norm", "Metric2") NUM_FEWSHOT = 0 # Change with your few shot # --------------------------------------------------- # Your leaderboard name TITLE = """

KatherLab Medical LLM Leaderboard

""" # What does your leaderboard evaluate? INTRODUCTION_TEXT = """ This Leaderboards compares the performance of LLM models regarding multiple information extraction tasks from medical documents. """ # Which evaluations are you running? how can people reproduce what you have? LLM_BENCHMARKS_TEXT = """ ## How it works We created multiple benchmark experiments. We use llama-cpp with restricted generations to evaluate LLM models on medical text. ## Reproducibility As of right now, the evaluation datasets are not publicly available. Please reach out to us if you have any questions. """ CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results" CITATION_BUTTON_TEXT = r"""Wiest, I. C., Wolf, F., Leßmann, M.-E., van Treeck, M., Ferber, D., Zhu, J., Boehme, H., Bressem, K. K., Ulrich, H., Ebert, M. P., & Kather, J. N. (2024). LLM-AIx: An open source pipeline for Information Extraction from unstructured medical text based on privacy preserving Large Language Models. https://doi.org/10.1101/2024.09.02.24312917 @misc{Wiest_Wolf_Leßmann_van Treeck_Ferber_Zhu_Boehme_Bressem_Ulrich_Ebert_et al._2024, title={LLM-AIx: An open source pipeline for Information Extraction from unstructured medical text based on privacy preserving Large Language Models}, url={http://dx.doi.org/10.1101/2024.09.02.24312917}, DOI={10.1101/2024.09.02.24312917}, author={Wiest, Isabella Catharina and Wolf, Fabian and Leßmann, Marie-Elisabeth and van Treeck, Marko and Ferber, Dyke and Zhu, Jiefu and Boehme, Heiko and Bressem, Keno K. and Ulrich, Hannes and Ebert, Matthias P. and Kather, Jakob Nikolas}, year={2024}, month=sep } """