Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -1,72 +1,60 @@
|
|
1 |
-
from
|
2 |
-
from
|
3 |
-
from
|
4 |
-
import
|
5 |
-
import
|
6 |
-
|
7 |
-
from
|
8 |
-
|
9 |
-
#
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
@app.
|
33 |
-
def generate_image():
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
# Convert output image to Base64
|
63 |
-
buffered = BytesIO()
|
64 |
-
images[0].save(buffered, format="PNG")
|
65 |
-
image_base64 = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
66 |
-
|
67 |
-
return jsonify({"image": image_base64})
|
68 |
-
except Exception as e:
|
69 |
-
return jsonify({"error": str(e)}), 500
|
70 |
-
|
71 |
-
if __name__ == "__main__":
|
72 |
-
app.run(host="0.0.0.0", port=7860)
|
|
|
1 |
+
from fastapi import FastAPI
|
2 |
+
from pydantic import BaseModel
|
3 |
+
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL, EulerAncestralDiscreteScheduler
|
4 |
+
from PIL import Image
|
5 |
+
import torch
|
6 |
+
import base64
|
7 |
+
from io import BytesIO
|
8 |
+
|
9 |
+
# Initialize FastAPI app
|
10 |
+
app = FastAPI()
|
11 |
+
|
12 |
+
# Load Hugging Face pipeline components
|
13 |
+
model_id = "fyp1/sketchToImage"
|
14 |
+
controlnet = ControlNetModel.from_pretrained(f"{model_id}/controlnet", torch_dtype=torch.float16)
|
15 |
+
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
16 |
+
scheduler = EulerAncestralDiscreteScheduler.from_pretrained(f"{model_id}/scheduler")
|
17 |
+
|
18 |
+
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
19 |
+
"stabilityai/stable-diffusion-xl-base-1.0",
|
20 |
+
controlnet=controlnet,
|
21 |
+
vae=vae,
|
22 |
+
scheduler=scheduler,
|
23 |
+
safety_checker=None,
|
24 |
+
torch_dtype=torch.float16,
|
25 |
+
).to("cuda" if torch.cuda.is_available() else "cpu")
|
26 |
+
|
27 |
+
class GenerateRequest(BaseModel):
|
28 |
+
prompt: str
|
29 |
+
negative_prompt: str
|
30 |
+
sketch: str # Base64 encoded image
|
31 |
+
|
32 |
+
@app.post("/generate")
|
33 |
+
async def generate_image(data: GenerateRequest):
|
34 |
+
try:
|
35 |
+
# Decode and preprocess the sketch image
|
36 |
+
sketch_bytes = base64.b64decode(data.sketch)
|
37 |
+
sketch_image = Image.open(BytesIO(sketch_bytes)).convert("L") # Convert to grayscale
|
38 |
+
sketch_image = sketch_image.resize((1024, 1024))
|
39 |
+
|
40 |
+
# Generate the image using the pipeline
|
41 |
+
with torch.no_grad():
|
42 |
+
images = pipe(
|
43 |
+
prompt=data.prompt,
|
44 |
+
negative_prompt=data.negative_prompt,
|
45 |
+
image=sketch_image,
|
46 |
+
controlnet_conditioning_scale=1.0,
|
47 |
+
width=1024,
|
48 |
+
height=1024,
|
49 |
+
num_inference_steps=30,
|
50 |
+
).images
|
51 |
+
|
52 |
+
# Convert output image to Base64
|
53 |
+
buffered = BytesIO()
|
54 |
+
images[0].save(buffered, format="PNG")
|
55 |
+
image_base64 = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
56 |
+
|
57 |
+
return {"image": image_base64}
|
58 |
+
|
59 |
+
except Exception as e:
|
60 |
+
return {"error": str(e)}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|