g30rv17ys commited on
Commit
254a800
·
1 Parent(s): 7610eb8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -19
app.py CHANGED
@@ -16,31 +16,26 @@ class_map = checkpoint_and_model["class_map"]
16
  img_size = checkpoint_and_model["img_size"]
17
  valid_tfms = tfms.A.Adapter([*tfms.A.resize_and_pad(img_size), tfms.A.Normalize()])
18
 
19
- # Populate examples in Gradio interface
20
- examples = [
21
- ['./1.jpg'],
22
- ['./2.jpg'],
23
- ['./3.jpg']
24
- ]
25
 
26
  def show_preds(input_image):
27
  img = PIL.Image.fromarray(input_image, "RGB")
28
- pred_dict = model_type.end2end_detect(img, valid_tfms, model,
29
- class_map=class_map,
30
- detection_threshold=0.5,
31
- display_label=True,
32
- display_bbox=True,
33
- return_img=True,
34
- font_size=16,
35
- label_color="#FF59D6")
36
- return pred_dict["img"]
37
 
38
  gr_interface = gr.Interface(
39
  fn=show_preds,
40
  inputs=["image"],
41
- outputs=[gr.outputs.Image(type="pil", label="VFNet Inference")],
42
- title="Rice Disease Detector",
43
- description="A VFNet model that detects common diseases on rice leaf. Upload an image or click an example image below to use.",
 
44
  examples=examples,
 
 
45
  )
46
- gr_interface.launch(inline=False, share=False, debug=True)
 
16
  img_size = checkpoint_and_model["img_size"]
17
  valid_tfms = tfms.A.Adapter([*tfms.A.resize_and_pad(img_size), tfms.A.Normalize()])
18
 
19
+ examples = [['1.jpg'],['2.jpg'],['3.jpg']]
 
 
 
 
 
20
 
21
  def show_preds(input_image):
22
  img = PIL.Image.fromarray(input_image, "RGB")
23
+ pred_dict = model_type.end2end_detect(img, valid_tfms, model, class_map=class_map, detection_threshold=0.5,
24
+ display_label=False, display_bbox=True, return_img=True,
25
+ font_size=16, label_color="#FF59D6")
26
+
27
+ return pred_dict["img"], len(pred_dict["detection"]["bboxes"])
28
+
 
 
 
29
 
30
  gr_interface = gr.Interface(
31
  fn=show_preds,
32
  inputs=["image"],
33
+ outputs=[gr.outputs.Image(type="pil", label="RetinaNet Inference"), gr.outputs.Textbox(type="number", label="Microalgae Count")],
34
+ title="Microalgae Detector with RetinaNet",
35
+ description="This RetinaNet model counts microalgaes on a given image. Upload an image or click an example image below to use.",
36
+ article="<p style='text-align: center'><a href='https://dicksonneoh.com/portfolio/how_to_deploy_od_models_on_android_with_flutter/' target='_blank'>Blog post</a></p>",
37
  examples=examples,
38
+ theme="dark-grass",
39
+ enable_queue=True
40
  )
41
+ gr_interface.launch()