Spaces:
Runtime error
Runtime error
import streamlit as st | |
import torch | |
from transformers import AutoTokenizer | |
from transformers import AutoModelForSequenceClassification | |
from transformers import AutoConfig | |
import numpy as np | |
import pandas as pd | |
import re | |
from scipy.special import softmax | |
from transformers import pipeline | |
import xformers | |
import requests | |
import json | |
from streamlit_lottie import st_lottie | |
import streamlit as st | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
import re | |
from transformers import pipeline | |
## Creating a cache to store my model for efficiency | |
def load_model(model_name): | |
model = AutoModelForSequenceClassification.from_pretrained(model_name) | |
return model | |
## Creating my tokenizer | |
def load_tokenizer(tokenizer_name): | |
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name) | |
return tokenizer | |
## Front end | |
st.title("Welcome to the Fine-Tuned Tiny-Bert Sentiment Classifier Page") | |
##including an animation to my page | |
def load_lottiefile(filepath: str): | |
with open(filepath, "r") as f: | |
return json.load(f) | |
# initializaing my session state | |
if 'lottie_hello_2' not in st.session_state: | |
st.session_state.lottie_hello_2 = load_lottiefile("./lottie_animations/dsbert.json") | |
# creating a funciton to upload the file while implementing session state | |
def handle_uploaded_file(uploaded_file): | |
if uploaded_file is not None: | |
st.session_state.lottie_hello_2 = load_lottiefile(uploaded_file.name) | |
# displaying the Lottie animation | |
st_lottie(st.session_state.lottie_hello_2, height=200) | |
text = st.text_input("Please Enter Your Thoughts of The Movie: ") | |
## Cleaning | |
def data_cleaner(text): | |
text = text.lower() | |
## Removing hashtags | |
text = re.sub(r'#\w+', '', text) | |
## Removing punctuations | |
text = re.sub("[^\w\s]", repl="", string=text) | |
text = re.sub(r'\d+', '', text) | |
text = " ".join([word for word in text.split() if not word.isdigit()]) | |
return text | |
## Running my input through my function | |
text_input = data_cleaner(text) | |
if 'ro_model' not in st.session_state: | |
st.session_state.ro_model = load_model("gArthur98/Capstone_TinyBert") | |
if 'ro_token' not in st.session_state: | |
st.session_state.ro_token = load_tokenizer("gArthur98/Capstone_TinyBert") | |
pipe = pipeline("sentiment-analysis", model=st.session_state.ro_model, tokenizer=st.session_state.ro_token) | |
result = pipe(text_input) | |
final = st.button("Predict Sentiment") | |
## Initializing my session state | |
if final: | |
for results in result: | |
if results['label'] == 'LABEL_0': | |
st.write(f"Your sentiment is Negative with a confidence score of {results['score']}") | |
else: | |
st.write(f"Your sentiment is Positive with a confidence score of {results['score']}") | |
st.write("""Example of sentences to input: | |
- I hate this movie so bad \n | |
- I love the movies scenes \n | |
- The movie was very boring | |
""") |