Spaces:
Sleeping
Sleeping
File size: 18,649 Bytes
bfc7b8a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 |
import os
import time
import httpx
import string
import random
import datetime as dt
from dotenv import load_dotenv
import streamlit as st
import extra_streamlit_components as stx
import asyncio
from aiocache import cached, Cache
import pandas as pd
from typing import Optional, Callable
from config import ENV_PATH, BEST_MODELS, TEST_FILE, TEST_FILE_URL, HISTORY_FILE, markdown_table_all
from utils.navigation import navigation
from utils.footer import footer
from utils.janitor import Janitor
# Load ENV
load_dotenv(ENV_PATH) # API_URL
# Set page configuration
st.set_page_config(
page_title="Homepage",
page_icon="๐ค",
layout="wide",
initial_sidebar_state='auto'
)
@cached(ttl=10, cache=Cache.MEMORY, namespace='streamlit_savedataset')
# @st.cache_data(show_spinner="Saving datasets...") # Streamlit cache is yet to support async functions
async def save_dataset(df: pd.DataFrame, filepath, csv=True) -> None:
async def save(df: pd.DataFrame, file):
return df.to_csv(file, index=False) if csv else df.to_excel(file, index=False)
async def read(file):
return pd.read_csv(file) if csv else pd.read_excel(file)
async def same_dfs(df: pd.DataFrame, df2: pd.DataFrame):
return df.equals(df2)
if not os.path.isfile(filepath): # Save if file does not exists
await save(df, filepath)
else: # Save if data are not same
df_old = await read(filepath)
if not await same_dfs(df, df_old):
await save(df, filepath)
@cached(ttl=10, cache=Cache.MEMORY, namespace='streamlit_testdata')
async def get_test_data():
try:
df_test_raw = pd.read_csv(TEST_FILE_URL)
await save_dataset(df_test_raw, TEST_FILE, csv=True)
except Exception:
df_test_raw = pd.read_csv(TEST_FILE)
# Some house keeping, clean df
df_test = df_test_raw.copy()
janitor = Janitor()
df_test = janitor.clean_dataframe(df_test) # Cleaned
return df_test_raw, df_test
# Function for selecting models
async def select_model() -> str:
col1, _ = st.columns(2)
with col1:
selected_model = st.selectbox(
'Select a model', options=BEST_MODELS, key='selected_model')
return selected_model
async def endpoint(model: str) -> str:
api_url = os.getenv("API_URL")
model_endpoint = f"{api_url}={model}"
return model_endpoint
# Function for making prediction
async def make_prediction(model_endpoint) -> Optional[pd.DataFrame]:
test_data = await get_test_data()
_, df_test = test_data
df: pd.DataFrame = None
search_patient = st.session_state.get('search_patient', False)
search_patient_id = st.session_state.get('search_patient_id', False)
manual_patient_id = st.session_state.get('manual_patient_id', False)
if isinstance(search_patient_id, str) and search_patient_id: # And not empty string
search_patient_id = [search_patient_id]
if search_patient and search_patient_id: # Search Form df and a patient was selected
mask = df_test['id'].isin(search_patient_id)
df_form = df_test[mask]
df = df_form.copy()
elif not (search_patient or search_patient_id) and manual_patient_id: # Manual form df
columns = ['manual_patient_id', 'prg', 'pl', 'pr', 'sk',
'ts', 'm11', 'bd2', 'age', 'insurance']
data = {c: [st.session_state.get(c)] for c in columns}
data['insurance'] = [1 if i == 'Yes' else 0 for i in data['insurance']]
# Make a DataFrame
df = pd.DataFrame(data).rename(
columns={'manual_patient_id': 'id'})
columns_int = ['prg', 'pl', 'pr', 'sk', 'ts', 'age']
columns_float = ['m11', 'bd2']
df[columns_int] = df[columns_int].astype(int)
df[columns_float] = df[columns_float].astype(float)
else: # Form did not send a patient
message = 'You must choose valid patient(s) from the select box.'
icon = '๐'
st.toast(message, icon=icon)
st.warning(message, icon=icon)
if df is not None:
try:
# JSON data
data = df.to_dict(orient='list')
# Send POST request with JSON data using the json parameter
async with httpx.AsyncClient() as client:
response = await client.post(model_endpoint, json=data, timeout=30)
response.raise_for_status() # Ensure we catch any HTTP errors
if (response.status_code == 200):
pred_prob = (response.json()['result'])
prediction = pred_prob['prediction'][0]
probability = pred_prob['probability'][0]
# Store results in session state
st.session_state['prediction'] = prediction
st.session_state['probability'] = probability
df['prediction'] = prediction
df['probability (%)'] = probability
df['time_of_prediction'] = pd.Timestamp(dt.datetime.now())
df['model_used'] = st.session_state['selected_model']
df.to_csv(HISTORY_FILE, mode='a',
header=not os.path.isfile(HISTORY_FILE))
except Exception as e:
st.error(f'๐ Unable to connect to the API server. {e}')
return df
async def convert_string(df: pd.DataFrame, string: str) -> str:
return string.upper() if all(col.isupper() for col in df.columns) else string
async def make_predictions(model_endpoint, df_uploaded=None, df_uploaded_clean=None) -> Optional[pd.DataFrame]:
df: pd.DataFrame = None
search_patient = st.session_state.get('search_patient', False)
patient_id_bulk = st.session_state.get('patient_id_bulk', False)
upload_bulk_predict = st.session_state.get('upload_bulk_predict', False)
if search_patient and patient_id_bulk: # Search Form df and a patient was selected
_, df_test = await get_test_data()
mask = df_test['id'].isin(patient_id_bulk)
df_bulk: pd.DataFrame = df_test[mask]
df = df_bulk.copy()
elif not (search_patient or patient_id_bulk) and upload_bulk_predict: # Upload widget df
df = df_uploaded_clean.copy()
else: # Form did not send a patient
message = 'You must choose valid patient(s) from the select box.'
icon = '๐'
st.toast(message, icon=icon)
st.warning(message, icon=icon)
if df is not None: # df should be set by form input or upload widget
try:
# JSON data
data = df.to_dict(orient='list')
# Send POST request with JSON data using the json parameter
async with httpx.AsyncClient() as client:
response = await client.post(model_endpoint, json=data, timeout=30)
response.raise_for_status() # Ensure we catch any HTTP errors
if (response.status_code == 200):
pred_prob = (response.json()['result'])
predictions = pred_prob['prediction']
probabilities = pred_prob['probability']
# Add columns sepsis, probability, time, and model used to uploaded df and form df
async def add_columns(df):
df[await convert_string(df, 'sepsis')] = predictions
df[await convert_string(df, 'probability_(%)')] = probabilities
df[await convert_string(df, 'time_of_prediction')
] = pd.Timestamp(dt.datetime.now())
df[await convert_string(df, 'model_used')
] = st.session_state['selected_model']
return df
# Form df if search patient is true or df from Uploaded data
if search_patient:
df = await add_columns(df)
df.to_csv(HISTORY_FILE, mode='a', header=not os.path.isfile(
HISTORY_FILE)) # Save only known patients
else:
df = await add_columns(df_uploaded) # Raw, No cleaning
# Store df with prediction results in session state
st.session_state['bulk_prediction_df'] = df
except Exception as e:
st.error(f'๐ Unable to connect to the API server. {e}')
return df
def on_click(func: Callable, model_endpoint: str):
async def handle_click():
await func(model_endpoint)
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
loop.run_until_complete(handle_click())
loop.close()
async def search_patient_form(model_endpoint: str) -> None:
test_data = await get_test_data()
_, df_test = test_data
patient_ids = df_test['id'].unique().tolist()+['']
if st.session_state['sidebar'] == 'single_prediction':
with st.form('search_patient_id_form'):
col1, _ = st.columns(2)
with col1:
st.write('#### Patient ID ๐ค')
st.selectbox(
'Search a patient', options=patient_ids, index=len(patient_ids)-1, key='search_patient_id')
st.form_submit_button('Predict', type='primary', on_click=on_click, kwargs=dict(
func=make_prediction, model_endpoint=model_endpoint))
else:
with st.form('search_patient_id_bulk_form'):
col1, _ = st.columns(2)
with col1:
st.write('#### Patient ID ๐ค')
st.multiselect(
'Search a patient', options=patient_ids, default=None, key='patient_id_bulk')
st.form_submit_button('Predict', type='primary', on_click=on_click, kwargs=dict(
func=make_predictions, model_endpoint=model_endpoint))
async def gen_random_patient_id() -> str:
numbers = ''.join(random.choices(string.digits, k=6))
letters = ''.join(random.choices(string.ascii_lowercase, k=4))
return f"ICU{numbers}-gen-{letters}"
async def manual_patient_form(model_endpoint) -> None:
with st.form('manual_patient_form'):
col1, col2, col3 = st.columns(3)
with col1:
st.write('### Patient Demographics ๐')
st.text_input(
'ID', value=await gen_random_patient_id(), key='manual_patient_id')
st.number_input('Age: patients age (years)', min_value=0,
max_value=100, step=1, key='age')
st.selectbox('Insurance: If a patient holds a valid insurance card', options=[
'Yes', 'No'], key='insurance')
with col2:
st.write('### Vital Signs ๐ฉบ')
st.number_input('BMI (weight in kg/(height in m)^2', min_value=10.0,
format="%.2f", step=1.00, key='m11')
st.number_input(
'Blood Pressure (mm Hg)', min_value=10.0, format="%.2f", step=1.00, key='pr')
st.number_input(
'PRG (plasma glucose)', min_value=10.0, format="%.2f", step=1.00, key='prg')
with col3:
st.write('### Blood Work ๐')
st.number_input(
'PL: Blood Work Result-1 (mu U/ml)', min_value=10.0, format="%.2f", step=1.00, key='pl')
st.number_input(
'SK: Blood Work Result 2 (mm)', min_value=10.0, format="%.2f", step=1.00, key='sk')
st.number_input(
'TS: Blood Work Result-3 (mu U/ml)', min_value=10.0, format="%.2f", step=1.00, key='ts')
st.number_input(
'BD2: Blood Work Result-4 (mu U/ml)', min_value=10.0, format="%.2f", step=1.00, key='bd2')
st.form_submit_button('Predict', type='primary', on_click=on_click, kwargs=dict(
func=make_prediction, model_endpoint=model_endpoint))
async def do_single_prediction(model_endpoint: str) -> None:
if st.session_state.get('search_patient', False):
await search_patient_form(model_endpoint)
else:
await manual_patient_form(model_endpoint)
async def show_prediction() -> None:
final_prediction = st.session_state.get('prediction', None)
final_probability = st.session_state.get('probability', None)
if final_prediction is None:
st.markdown('#### Prediction will show below! ๐ฌ')
st.divider()
else:
st.markdown('#### Prediction! ๐ฌ')
st.divider()
if final_prediction.lower() == 'positive':
st.toast("Sepsis alert!", icon='๐ฆ ')
message = f"It is **{final_probability:.2f} %** likely that the patient will develop **sepsis.**"
st.warning(message, icon='๐')
time.sleep(5)
st.toast(message)
else:
st.toast("Continous monitoring", icon='๐ฌ')
message = f"The patient will **not** develop sepsis with a likelihood of **{final_probability:.2f}%**."
st.success(message, icon='๐')
time.sleep(5)
st.toast(message)
# Set prediction and probability to None
st.session_state['prediction'] = None
st.session_state['probability'] = None
# @st.cache_data(show_spinner=False) Caching results from async functions buggy
async def convert_df(df: pd.DataFrame):
return df.to_csv(index=False)
async def bulk_upload_widget(model_endpoint: str) -> None:
uploaded_file = st.file_uploader(
"Choose a CSV or Excel File", type=['csv', 'xls', 'xlsx'])
uploaded = uploaded_file is not None
upload_bulk_predict = st.button('Predict', type='primary',
help='Upload a csv/excel file to make predictions', disabled=not uploaded, key='upload_bulk_predict')
df = None
if upload_bulk_predict and uploaded:
df_test_raw, _ = await get_test_data()
# Uploadfile is a "file-like" object is accepted
try:
try:
df = pd.read_csv(uploaded_file)
except Exception:
df = pd.read_excel(uploaded_file)
df_columns = set(df.columns)
df_test_columns = set(df_test_raw.columns)
df_schema = df.dtypes
df_test_schema = df_test_raw.dtypes
if df_columns != df_test_columns or not df_schema.equals(df_test_schema):
df = None
raise Exception
else:
# Clean dataframe
janitor = Janitor()
df_clean = janitor.clean_dataframe(df)
df = await make_predictions(
model_endpoint, df_uploaded=df, df_uploaded_clean=df_clean)
except Exception:
st.subheader('Data template')
data_template = df_test_raw[:3]
st.dataframe(data_template)
csv = await convert_df(data_template)
message_1 = 'Upload a valid csv or excel file.'
message_2 = f"{message_1.split('.')[0]} with the columns and schema of the above data template."
icon = '๐'
st.toast(message_1, icon=icon)
st.download_button(
label='Download template',
data=csv,
file_name='Data template.csv',
mime="text/csv",
type='secondary',
key='download-data-template'
)
st.info('Download the above template for use as a baseline structure.')
# Display explander to show the data dictionary
with st.expander("Expand to see the data dictionary", icon="๐ก"):
st.subheader("Data dictionary")
st.markdown(markdown_table_all)
st.warning(message_2, icon=icon)
return df
async def do_bulk_prediction(model_endpoint: str) -> None:
if st.session_state.get('search_patient', False):
await search_patient_form(model_endpoint)
else:
# File uploader
await bulk_upload_widget(model_endpoint)
async def show_bulk_predictions(df: pd.DataFrame) -> None:
if df is not None:
st.subheader("Bulk predictions ๐ฎ", divider=True)
st.dataframe(df.astype(str))
csv = await convert_df(df)
message = 'The predictions are ready for download.'
icon = 'โฌ๏ธ'
st.toast(message, icon=icon)
st.info(message, icon=icon)
st.download_button(
label='Download predictions',
data=csv,
file_name='Bulk prediction.csv',
mime="text/csv",
type='secondary',
key='download-bulk-prediction'
)
# Set bulk prediction df to None
st.session_state['bulk_prediction_df'] = None
async def sidebar(sidebar_type: str) -> st.sidebar:
return st.session_state.update({'sidebar': sidebar_type})
async def main():
st.title("๐ค Predict Sepsis ๐ฆ ")
# Navigation
await navigation()
st.sidebar.toggle("Looking for a patient?", value=st.session_state.get(
'search_patient', False), key='search_patient')
selected_model = await select_model()
model_endpoint = await endpoint(selected_model)
selected_predict_tab = st.session_state.get('selected_predict_tab')
default = 1 if selected_predict_tab is None else selected_predict_tab
with st.spinner('A little house keeping...'):
time.sleep(st.session_state.get('sleep', 1.5))
chosen_id = stx.tab_bar(data=[
stx.TabBarItemData(id=1, title='๐ฌ Predict', description=''),
stx.TabBarItemData(id=2, title='๐ฎ Bulk predict',
description=''),
], default=default)
st.session_state['sleep'] = 0
if chosen_id == '1':
await sidebar('single_prediction')
await do_single_prediction(model_endpoint)
await show_prediction()
elif chosen_id == '2':
await sidebar('bulk_prediction')
df_with_predictions = await do_bulk_prediction(model_endpoint)
if df_with_predictions is None:
df_with_predictions = st.session_state.get(
'bulk_prediction_df', None)
await show_bulk_predictions(df_with_predictions)
# Add footer
await footer()
if __name__ == "__main__":
asyncio.run(main())
|