File size: 18,649 Bytes
bfc7b8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
import os
import time
import httpx
import string
import random
import datetime as dt
from dotenv import load_dotenv

import streamlit as st
import extra_streamlit_components as stx

import asyncio
from aiocache import cached, Cache

import pandas as pd
from typing import Optional, Callable

from config import ENV_PATH, BEST_MODELS, TEST_FILE, TEST_FILE_URL, HISTORY_FILE, markdown_table_all

from utils.navigation import navigation
from utils.footer import footer
from utils.janitor import Janitor


# Load ENV
load_dotenv(ENV_PATH)  # API_URL

# Set page configuration
st.set_page_config(
    page_title="Homepage",
    page_icon="๐Ÿค–",
    layout="wide",
    initial_sidebar_state='auto'
)


@cached(ttl=10, cache=Cache.MEMORY, namespace='streamlit_savedataset')
# @st.cache_data(show_spinner="Saving datasets...") # Streamlit cache is yet to support async functions
async def save_dataset(df: pd.DataFrame, filepath, csv=True) -> None:
    async def save(df: pd.DataFrame, file):
        return df.to_csv(file, index=False) if csv else df.to_excel(file, index=False)

    async def read(file):
        return pd.read_csv(file) if csv else pd.read_excel(file)

    async def same_dfs(df: pd.DataFrame, df2: pd.DataFrame):
        return df.equals(df2)

    if not os.path.isfile(filepath):  # Save if file does not exists
        await save(df, filepath)
    else:  # Save if data are not same
        df_old = await read(filepath)
        if not await same_dfs(df, df_old):
            await save(df, filepath)


@cached(ttl=10, cache=Cache.MEMORY, namespace='streamlit_testdata')
async def get_test_data():
    try:
        df_test_raw = pd.read_csv(TEST_FILE_URL)
        await save_dataset(df_test_raw, TEST_FILE, csv=True)
    except Exception:
        df_test_raw = pd.read_csv(TEST_FILE)

    # Some house keeping, clean df
    df_test = df_test_raw.copy()
    janitor = Janitor()
    df_test = janitor.clean_dataframe(df_test)  # Cleaned

    return df_test_raw, df_test


# Function for selecting models
async def select_model() -> str:
    col1, _ = st.columns(2)
    with col1:
        selected_model = st.selectbox(
            'Select a model', options=BEST_MODELS, key='selected_model')

    return selected_model


async def endpoint(model: str) -> str:
    api_url = os.getenv("API_URL")
    model_endpoint = f"{api_url}={model}"
    return model_endpoint


# Function for making prediction
async def make_prediction(model_endpoint) -> Optional[pd.DataFrame]:

    test_data = await get_test_data()
    _, df_test = test_data

    df: pd.DataFrame = None
    search_patient = st.session_state.get('search_patient', False)
    search_patient_id = st.session_state.get('search_patient_id', False)
    manual_patient_id = st.session_state.get('manual_patient_id', False)
    if isinstance(search_patient_id, str) and search_patient_id:  # And not empty string
        search_patient_id = [search_patient_id]
    if search_patient and search_patient_id:  # Search Form df and a patient was selected
        mask = df_test['id'].isin(search_patient_id)
        df_form = df_test[mask]
        df = df_form.copy()
    elif not (search_patient or search_patient_id) and manual_patient_id:  # Manual form df
        columns = ['manual_patient_id', 'prg', 'pl', 'pr', 'sk',
                   'ts', 'm11', 'bd2', 'age', 'insurance']
        data = {c: [st.session_state.get(c)] for c in columns}
        data['insurance'] = [1 if i == 'Yes' else 0 for i in data['insurance']]

        # Make a DataFrame
        df = pd.DataFrame(data).rename(
            columns={'manual_patient_id': 'id'})
        columns_int = ['prg', 'pl', 'pr', 'sk', 'ts', 'age']
        columns_float = ['m11', 'bd2']

        df[columns_int] = df[columns_int].astype(int)
        df[columns_float] = df[columns_float].astype(float)
    else:  # Form did not send a patient
        message = 'You must choose valid patient(s) from the select box.'
        icon = '๐Ÿ˜ž'
        st.toast(message, icon=icon)
        st.warning(message, icon=icon)

    if df is not None:
        try:
            # JSON data
            data = df.to_dict(orient='list')

            # Send POST request with JSON data using the json parameter
            async with httpx.AsyncClient() as client:
                response = await client.post(model_endpoint, json=data, timeout=30)
                response.raise_for_status()  # Ensure we catch any HTTP errors

            if (response.status_code == 200):
                pred_prob = (response.json()['result'])
                prediction = pred_prob['prediction'][0]
                probability = pred_prob['probability'][0]

                # Store results in session state
                st.session_state['prediction'] = prediction
                st.session_state['probability'] = probability
                df['prediction'] = prediction
                df['probability (%)'] = probability
                df['time_of_prediction'] = pd.Timestamp(dt.datetime.now())
                df['model_used'] = st.session_state['selected_model']

                df.to_csv(HISTORY_FILE, mode='a',
                          header=not os.path.isfile(HISTORY_FILE))
        except Exception as e:
            st.error(f'๐Ÿ˜ž Unable to connect to the API server. {e}')

    return df


async def convert_string(df: pd.DataFrame, string: str) -> str:
    return string.upper() if all(col.isupper() for col in df.columns) else string


async def make_predictions(model_endpoint, df_uploaded=None, df_uploaded_clean=None) -> Optional[pd.DataFrame]:

    df: pd.DataFrame = None
    search_patient = st.session_state.get('search_patient', False)
    patient_id_bulk = st.session_state.get('patient_id_bulk', False)
    upload_bulk_predict = st.session_state.get('upload_bulk_predict', False)
    if search_patient and patient_id_bulk:  # Search Form df and a patient was selected
        _, df_test = await get_test_data()
        mask = df_test['id'].isin(patient_id_bulk)
        df_bulk: pd.DataFrame = df_test[mask]
        df = df_bulk.copy()

    elif not (search_patient or patient_id_bulk) and upload_bulk_predict:  # Upload widget df
        df = df_uploaded_clean.copy()
    else:  # Form did not send a patient
        message = 'You must choose valid patient(s) from the select box.'
        icon = '๐Ÿ˜ž'
        st.toast(message, icon=icon)
        st.warning(message, icon=icon)

    if df is not None:  # df should be set by form input or upload widget
        try:
            # JSON data
            data = df.to_dict(orient='list')

            # Send POST request with JSON data using the json parameter
            async with httpx.AsyncClient() as client:
                response = await client.post(model_endpoint, json=data, timeout=30)
                response.raise_for_status()  # Ensure we catch any HTTP errors

            if (response.status_code == 200):
                pred_prob = (response.json()['result'])
                predictions = pred_prob['prediction']
                probabilities = pred_prob['probability']

                # Add columns sepsis, probability, time, and model used to uploaded df and form df

                async def add_columns(df):
                    df[await convert_string(df, 'sepsis')] = predictions
                    df[await convert_string(df, 'probability_(%)')] = probabilities
                    df[await convert_string(df, 'time_of_prediction')
                       ] = pd.Timestamp(dt.datetime.now())
                    df[await convert_string(df, 'model_used')
                       ] = st.session_state['selected_model']

                    return df

                # Form df if search patient is true or df from Uploaded data
                if search_patient:
                    df = await add_columns(df)

                    df.to_csv(HISTORY_FILE, mode='a', header=not os.path.isfile(
                        HISTORY_FILE))  # Save only known patients

                else:
                    df = await add_columns(df_uploaded)  # Raw, No cleaning

                # Store df with prediction results in session state
                st.session_state['bulk_prediction_df'] = df
        except Exception as e:
            st.error(f'๐Ÿ˜ž Unable to connect to the API server. {e}')

    return df


def on_click(func: Callable, model_endpoint: str):
    async def handle_click():
        await func(model_endpoint)

    loop = asyncio.new_event_loop()
    asyncio.set_event_loop(loop)
    loop.run_until_complete(handle_click())
    loop.close()


async def search_patient_form(model_endpoint: str) -> None:
    test_data = await get_test_data()
    _, df_test = test_data

    patient_ids = df_test['id'].unique().tolist()+['']
    if st.session_state['sidebar'] == 'single_prediction':
        with st.form('search_patient_id_form'):
            col1, _ = st.columns(2)
            with col1:
                st.write('#### Patient ID ๐Ÿค’')
                st.selectbox(
                    'Search a patient', options=patient_ids, index=len(patient_ids)-1, key='search_patient_id')
            st.form_submit_button('Predict', type='primary', on_click=on_click, kwargs=dict(
                func=make_prediction, model_endpoint=model_endpoint))
    else:
        with st.form('search_patient_id_bulk_form'):
            col1, _ = st.columns(2)
            with col1:
                st.write('#### Patient ID ๐Ÿค’')
                st.multiselect(
                    'Search a patient', options=patient_ids, default=None, key='patient_id_bulk')
            st.form_submit_button('Predict', type='primary', on_click=on_click, kwargs=dict(
                func=make_predictions, model_endpoint=model_endpoint))


async def gen_random_patient_id() -> str:
    numbers = ''.join(random.choices(string.digits, k=6))
    letters = ''.join(random.choices(string.ascii_lowercase, k=4))
    return f"ICU{numbers}-gen-{letters}"


async def manual_patient_form(model_endpoint) -> None:
    with st.form('manual_patient_form'):

        col1, col2, col3 = st.columns(3)

        with col1:
            st.write('### Patient Demographics ๐Ÿ›Œ')
            st.text_input(
                'ID', value=await gen_random_patient_id(), key='manual_patient_id')
            st.number_input('Age: patients age (years)', min_value=0,
                            max_value=100, step=1, key='age')
            st.selectbox('Insurance: If a patient holds a valid insurance card', options=[
                'Yes', 'No'], key='insurance')

        with col2:
            st.write('### Vital Signs ๐Ÿฉบ')
            st.number_input('BMI (weight in kg/(height in m)^2', min_value=10.0,
                            format="%.2f", step=1.00, key='m11')
            st.number_input(
                'Blood Pressure (mm Hg)', min_value=10.0, format="%.2f", step=1.00, key='pr')
            st.number_input(
                'PRG (plasma glucose)', min_value=10.0, format="%.2f", step=1.00, key='prg')

        with col3:
            st.write('### Blood Work ๐Ÿ’‰')
            st.number_input(
                'PL: Blood Work Result-1 (mu U/ml)', min_value=10.0, format="%.2f", step=1.00, key='pl')
            st.number_input(
                'SK: Blood Work Result 2 (mm)', min_value=10.0, format="%.2f", step=1.00, key='sk')
            st.number_input(
                'TS: Blood Work Result-3 (mu U/ml)', min_value=10.0, format="%.2f", step=1.00, key='ts')
            st.number_input(
                'BD2: Blood Work Result-4 (mu U/ml)', min_value=10.0, format="%.2f", step=1.00, key='bd2')

        st.form_submit_button('Predict', type='primary', on_click=on_click, kwargs=dict(
            func=make_prediction, model_endpoint=model_endpoint))


async def do_single_prediction(model_endpoint: str) -> None:
    if st.session_state.get('search_patient', False):
        await search_patient_form(model_endpoint)
    else:
        await manual_patient_form(model_endpoint)


async def show_prediction() -> None:
    final_prediction = st.session_state.get('prediction', None)
    final_probability = st.session_state.get('probability', None)

    if final_prediction is None:
        st.markdown('#### Prediction will show below! ๐Ÿ”ฌ')
        st.divider()
    else:
        st.markdown('#### Prediction! ๐Ÿ”ฌ')
        st.divider()
        if final_prediction.lower() == 'positive':
            st.toast("Sepsis alert!", icon='๐Ÿฆ ')
            message = f"It is **{final_probability:.2f} %** likely that the patient will develop **sepsis.**"
            st.warning(message, icon='๐Ÿ˜ž')
            time.sleep(5)
            st.toast(message)
        else:
            st.toast("Continous monitoring", icon='๐Ÿ”ฌ')
            message = f"The patient will **not** develop sepsis with a likelihood of **{final_probability:.2f}%**."
            st.success(message, icon='๐Ÿ˜Š')
            time.sleep(5)
            st.toast(message)

    # Set prediction and probability to None
    st.session_state['prediction'] = None
    st.session_state['probability'] = None


# @st.cache_data(show_spinner=False) Caching results from async functions buggy
async def convert_df(df: pd.DataFrame):
    return df.to_csv(index=False)


async def bulk_upload_widget(model_endpoint: str) -> None:
    uploaded_file = st.file_uploader(
        "Choose a CSV or Excel File", type=['csv', 'xls', 'xlsx'])

    uploaded = uploaded_file is not None

    upload_bulk_predict = st.button('Predict', type='primary',
                                    help='Upload a csv/excel file to make predictions', disabled=not uploaded, key='upload_bulk_predict')
    df = None
    if upload_bulk_predict and uploaded:
        df_test_raw, _ = await get_test_data()
        # Uploadfile is a "file-like" object is accepted
        try:
            try:
                df = pd.read_csv(uploaded_file)
            except Exception:
                df = pd.read_excel(uploaded_file)

            df_columns = set(df.columns)
            df_test_columns = set(df_test_raw.columns)
            df_schema = df.dtypes
            df_test_schema = df_test_raw.dtypes

            if df_columns != df_test_columns or not df_schema.equals(df_test_schema):
                df = None
                raise Exception
            else:
                # Clean dataframe
                janitor = Janitor()
                df_clean = janitor.clean_dataframe(df)

                df = await make_predictions(
                    model_endpoint, df_uploaded=df, df_uploaded_clean=df_clean)

        except Exception:
            st.subheader('Data template')
            data_template = df_test_raw[:3]
            st.dataframe(data_template)
            csv = await convert_df(data_template)
            message_1 = 'Upload a valid csv or excel file.'
            message_2 = f"{message_1.split('.')[0]} with the columns and schema of the above data template."
            icon = '๐Ÿ˜ž'
            st.toast(message_1, icon=icon)

            st.download_button(
                label='Download template',
                data=csv,
                file_name='Data template.csv',
                mime="text/csv",
                type='secondary',
                key='download-data-template'
            )
            st.info('Download the above template for use as a baseline structure.')

            # Display explander to show the data dictionary
            with st.expander("Expand to see the data dictionary", icon="๐Ÿ’ก"):
                st.subheader("Data dictionary")
                st.markdown(markdown_table_all)
            st.warning(message_2, icon=icon)

    return df


async def do_bulk_prediction(model_endpoint: str) -> None:
    if st.session_state.get('search_patient', False):
        await search_patient_form(model_endpoint)
    else:
        # File uploader
        await bulk_upload_widget(model_endpoint)


async def show_bulk_predictions(df: pd.DataFrame) -> None:
    if df is not None:
        st.subheader("Bulk predictions ๐Ÿ”ฎ", divider=True)
        st.dataframe(df.astype(str))

        csv = await convert_df(df)
        message = 'The predictions are ready for download.'
        icon = 'โฌ‡๏ธ'
        st.toast(message, icon=icon)
        st.info(message, icon=icon)
        st.download_button(
            label='Download predictions',
            data=csv,
            file_name='Bulk prediction.csv',
            mime="text/csv",
            type='secondary',
            key='download-bulk-prediction'
        )

        # Set bulk prediction df to None
        st.session_state['bulk_prediction_df'] = None


async def sidebar(sidebar_type: str) -> st.sidebar:
    return st.session_state.update({'sidebar': sidebar_type})


async def main():
    st.title("๐Ÿค– Predict Sepsis ๐Ÿฆ ")

    # Navigation
    await navigation()

    st.sidebar.toggle("Looking for a patient?", value=st.session_state.get(
        'search_patient', False), key='search_patient')

    selected_model = await select_model()
    model_endpoint = await endpoint(selected_model)

    selected_predict_tab = st.session_state.get('selected_predict_tab')
    default = 1 if selected_predict_tab is None else selected_predict_tab

    with st.spinner('A little house keeping...'):
        time.sleep(st.session_state.get('sleep', 1.5))
        chosen_id = stx.tab_bar(data=[
            stx.TabBarItemData(id=1, title='๐Ÿ”ฌ Predict', description=''),
            stx.TabBarItemData(id=2, title='๐Ÿ”ฎ Bulk predict',
                               description=''),
        ], default=default)
        st.session_state['sleep'] = 0

    if chosen_id == '1':
        await sidebar('single_prediction')
        await do_single_prediction(model_endpoint)
        await show_prediction()

    elif chosen_id == '2':
        await sidebar('bulk_prediction')
        df_with_predictions = await do_bulk_prediction(model_endpoint)
        if df_with_predictions is None:
            df_with_predictions = st.session_state.get(
                'bulk_prediction_df', None)
        await show_bulk_predictions(df_with_predictions)

    # Add footer
    await footer()


if __name__ == "__main__":
    asyncio.run(main())