Spaces:
Sleeping
Sleeping
Update app.py
Browse files**Update toast display to 1 sec**
app.py
CHANGED
@@ -1,484 +1,484 @@
|
|
1 |
-
import os
|
2 |
-
import time
|
3 |
-
import httpx
|
4 |
-
import string
|
5 |
-
import random
|
6 |
-
import datetime as dt
|
7 |
-
from dotenv import load_dotenv
|
8 |
-
|
9 |
-
import streamlit as st
|
10 |
-
import extra_streamlit_components as stx
|
11 |
-
|
12 |
-
import asyncio
|
13 |
-
from aiocache import cached, Cache
|
14 |
-
|
15 |
-
import pandas as pd
|
16 |
-
from typing import Optional, Callable
|
17 |
-
|
18 |
-
from config import ENV_PATH, BEST_MODELS, TEST_FILE, TEST_FILE_URL, HISTORY_FILE, markdown_table_all
|
19 |
-
|
20 |
-
from utils.navigation import navigation
|
21 |
-
from utils.footer import footer
|
22 |
-
from utils.janitor import Janitor
|
23 |
-
|
24 |
-
|
25 |
-
# Load ENV
|
26 |
-
load_dotenv(ENV_PATH) # API_URL
|
27 |
-
|
28 |
-
# Set page configuration
|
29 |
-
st.set_page_config(
|
30 |
-
page_title="Homepage",
|
31 |
-
page_icon="๐ค",
|
32 |
-
layout="wide",
|
33 |
-
initial_sidebar_state='auto'
|
34 |
-
)
|
35 |
-
|
36 |
-
|
37 |
-
@cached(ttl=10, cache=Cache.MEMORY, namespace='streamlit_savedataset')
|
38 |
-
# @st.cache_data(show_spinner="Saving datasets...") # Streamlit cache is yet to support async functions
|
39 |
-
async def save_dataset(df: pd.DataFrame, filepath, csv=True) -> None:
|
40 |
-
async def save(df: pd.DataFrame, file):
|
41 |
-
return df.to_csv(file, index=False) if csv else df.to_excel(file, index=False)
|
42 |
-
|
43 |
-
async def read(file):
|
44 |
-
return pd.read_csv(file) if csv else pd.read_excel(file)
|
45 |
-
|
46 |
-
async def same_dfs(df: pd.DataFrame, df2: pd.DataFrame):
|
47 |
-
return df.equals(df2)
|
48 |
-
|
49 |
-
if not os.path.isfile(filepath): # Save if file does not exists
|
50 |
-
await save(df, filepath)
|
51 |
-
else: # Save if data are not same
|
52 |
-
df_old = await read(filepath)
|
53 |
-
if not await same_dfs(df, df_old):
|
54 |
-
await save(df, filepath)
|
55 |
-
|
56 |
-
|
57 |
-
@cached(ttl=10, cache=Cache.MEMORY, namespace='streamlit_testdata')
|
58 |
-
async def get_test_data():
|
59 |
-
try:
|
60 |
-
df_test_raw = pd.read_csv(TEST_FILE_URL)
|
61 |
-
await save_dataset(df_test_raw, TEST_FILE, csv=True)
|
62 |
-
except Exception:
|
63 |
-
df_test_raw = pd.read_csv(TEST_FILE)
|
64 |
-
|
65 |
-
# Some house keeping, clean df
|
66 |
-
df_test = df_test_raw.copy()
|
67 |
-
janitor = Janitor()
|
68 |
-
df_test = janitor.clean_dataframe(df_test) # Cleaned
|
69 |
-
|
70 |
-
return df_test_raw, df_test
|
71 |
-
|
72 |
-
|
73 |
-
# Function for selecting models
|
74 |
-
async def select_model() -> str:
|
75 |
-
col1, _ = st.columns(2)
|
76 |
-
with col1:
|
77 |
-
selected_model = st.selectbox(
|
78 |
-
'Select a model', options=BEST_MODELS, key='selected_model')
|
79 |
-
|
80 |
-
return selected_model
|
81 |
-
|
82 |
-
|
83 |
-
async def endpoint(model: str) -> str:
|
84 |
-
api_url = os.getenv("API_URL")
|
85 |
-
model_endpoint = f"{api_url}={model}"
|
86 |
-
return model_endpoint
|
87 |
-
|
88 |
-
|
89 |
-
# Function for making prediction
|
90 |
-
async def make_prediction(model_endpoint) -> Optional[pd.DataFrame]:
|
91 |
-
|
92 |
-
test_data = await get_test_data()
|
93 |
-
_, df_test = test_data
|
94 |
-
|
95 |
-
df: pd.DataFrame = None
|
96 |
-
search_patient = st.session_state.get('search_patient', False)
|
97 |
-
search_patient_id = st.session_state.get('search_patient_id', False)
|
98 |
-
manual_patient_id = st.session_state.get('manual_patient_id', False)
|
99 |
-
if isinstance(search_patient_id, str) and search_patient_id: # And not empty string
|
100 |
-
search_patient_id = [search_patient_id]
|
101 |
-
if search_patient and search_patient_id: # Search Form df and a patient was selected
|
102 |
-
mask = df_test['id'].isin(search_patient_id)
|
103 |
-
df_form = df_test[mask]
|
104 |
-
df = df_form.copy()
|
105 |
-
elif not (search_patient or search_patient_id) and manual_patient_id: # Manual form df
|
106 |
-
columns = ['manual_patient_id', 'prg', 'pl', 'pr', 'sk',
|
107 |
-
'ts', 'm11', 'bd2', 'age', 'insurance']
|
108 |
-
data = {c: [st.session_state.get(c)] for c in columns}
|
109 |
-
data['insurance'] = [1 if i == 'Yes' else 0 for i in data['insurance']]
|
110 |
-
|
111 |
-
# Make a DataFrame
|
112 |
-
df = pd.DataFrame(data).rename(
|
113 |
-
columns={'manual_patient_id': 'id'})
|
114 |
-
columns_int = ['prg', 'pl', 'pr', 'sk', 'ts', 'age']
|
115 |
-
columns_float = ['m11', 'bd2']
|
116 |
-
|
117 |
-
df[columns_int] = df[columns_int].astype(int)
|
118 |
-
df[columns_float] = df[columns_float].astype(float)
|
119 |
-
else: # Form did not send a patient
|
120 |
-
message = 'You must choose valid patient(s) from the select box.'
|
121 |
-
icon = '๐'
|
122 |
-
st.toast(message, icon=icon)
|
123 |
-
st.warning(message, icon=icon)
|
124 |
-
|
125 |
-
if df is not None:
|
126 |
-
try:
|
127 |
-
# JSON data
|
128 |
-
data = df.to_dict(orient='list')
|
129 |
-
|
130 |
-
# Send POST request with JSON data using the json parameter
|
131 |
-
async with httpx.AsyncClient() as client:
|
132 |
-
response = await client.post(model_endpoint, json=data, timeout=30)
|
133 |
-
response.raise_for_status() # Ensure we catch any HTTP errors
|
134 |
-
|
135 |
-
if (response.status_code == 200):
|
136 |
-
pred_prob = (response.json()['result'])
|
137 |
-
prediction = pred_prob['prediction'][0]
|
138 |
-
probability = pred_prob['probability'][0]
|
139 |
-
|
140 |
-
# Store results in session state
|
141 |
-
st.session_state['prediction'] = prediction
|
142 |
-
st.session_state['probability'] = probability
|
143 |
-
df['prediction'] = prediction
|
144 |
-
df['probability (%)'] = probability
|
145 |
-
df['time_of_prediction'] = pd.Timestamp(dt.datetime.now())
|
146 |
-
df['model_used'] = st.session_state['selected_model']
|
147 |
-
|
148 |
-
df.to_csv(HISTORY_FILE, mode='a',
|
149 |
-
header=not os.path.isfile(HISTORY_FILE))
|
150 |
-
except Exception as e:
|
151 |
-
st.error(f'๐ Unable to connect to the API server. {e}')
|
152 |
-
|
153 |
-
return df
|
154 |
-
|
155 |
-
|
156 |
-
async def convert_string(df: pd.DataFrame, string: str) -> str:
|
157 |
-
return string.upper() if all(col.isupper() for col in df.columns) else string
|
158 |
-
|
159 |
-
|
160 |
-
async def make_predictions(model_endpoint, df_uploaded=None, df_uploaded_clean=None) -> Optional[pd.DataFrame]:
|
161 |
-
|
162 |
-
df: pd.DataFrame = None
|
163 |
-
search_patient = st.session_state.get('search_patient', False)
|
164 |
-
patient_id_bulk = st.session_state.get('patient_id_bulk', False)
|
165 |
-
upload_bulk_predict = st.session_state.get('upload_bulk_predict', False)
|
166 |
-
if search_patient and patient_id_bulk: # Search Form df and a patient was selected
|
167 |
-
_, df_test = await get_test_data()
|
168 |
-
mask = df_test['id'].isin(patient_id_bulk)
|
169 |
-
df_bulk: pd.DataFrame = df_test[mask]
|
170 |
-
df = df_bulk.copy()
|
171 |
-
|
172 |
-
elif not (search_patient or patient_id_bulk) and upload_bulk_predict: # Upload widget df
|
173 |
-
df = df_uploaded_clean.copy()
|
174 |
-
else: # Form did not send a patient
|
175 |
-
message = 'You must choose valid patient(s) from the select box.'
|
176 |
-
icon = '๐'
|
177 |
-
st.toast(message, icon=icon)
|
178 |
-
st.warning(message, icon=icon)
|
179 |
-
|
180 |
-
if df is not None: # df should be set by form input or upload widget
|
181 |
-
try:
|
182 |
-
# JSON data
|
183 |
-
data = df.to_dict(orient='list')
|
184 |
-
|
185 |
-
# Send POST request with JSON data using the json parameter
|
186 |
-
async with httpx.AsyncClient() as client:
|
187 |
-
response = await client.post(model_endpoint, json=data, timeout=30)
|
188 |
-
response.raise_for_status() # Ensure we catch any HTTP errors
|
189 |
-
|
190 |
-
if (response.status_code == 200):
|
191 |
-
pred_prob = (response.json()['result'])
|
192 |
-
predictions = pred_prob['prediction']
|
193 |
-
probabilities = pred_prob['probability']
|
194 |
-
|
195 |
-
# Add columns sepsis, probability, time, and model used to uploaded df and form df
|
196 |
-
|
197 |
-
async def add_columns(df):
|
198 |
-
df[await convert_string(df, 'sepsis')] = predictions
|
199 |
-
df[await convert_string(df, 'probability_(%)')] = probabilities
|
200 |
-
df[await convert_string(df, 'time_of_prediction')
|
201 |
-
] = pd.Timestamp(dt.datetime.now())
|
202 |
-
df[await convert_string(df, 'model_used')
|
203 |
-
] = st.session_state['selected_model']
|
204 |
-
|
205 |
-
return df
|
206 |
-
|
207 |
-
# Form df if search patient is true or df from Uploaded data
|
208 |
-
if search_patient:
|
209 |
-
df = await add_columns(df)
|
210 |
-
|
211 |
-
df.to_csv(HISTORY_FILE, mode='a', header=not os.path.isfile(
|
212 |
-
HISTORY_FILE)) # Save only known patients
|
213 |
-
|
214 |
-
else:
|
215 |
-
df = await add_columns(df_uploaded) # Raw, No cleaning
|
216 |
-
|
217 |
-
# Store df with prediction results in session state
|
218 |
-
st.session_state['bulk_prediction_df'] = df
|
219 |
-
except Exception as e:
|
220 |
-
st.error(f'๐ Unable to connect to the API server. {e}')
|
221 |
-
|
222 |
-
return df
|
223 |
-
|
224 |
-
|
225 |
-
def on_click(func: Callable, model_endpoint: str):
|
226 |
-
async def handle_click():
|
227 |
-
await func(model_endpoint)
|
228 |
-
|
229 |
-
loop = asyncio.new_event_loop()
|
230 |
-
asyncio.set_event_loop(loop)
|
231 |
-
loop.run_until_complete(handle_click())
|
232 |
-
loop.close()
|
233 |
-
|
234 |
-
|
235 |
-
async def search_patient_form(model_endpoint: str) -> None:
|
236 |
-
test_data = await get_test_data()
|
237 |
-
_, df_test = test_data
|
238 |
-
|
239 |
-
patient_ids = df_test['id'].unique().tolist()+['']
|
240 |
-
if st.session_state['sidebar'] == 'single_prediction':
|
241 |
-
with st.form('search_patient_id_form'):
|
242 |
-
col1, _ = st.columns(2)
|
243 |
-
with col1:
|
244 |
-
st.write('#### Patient ID ๐ค')
|
245 |
-
st.selectbox(
|
246 |
-
'Search a patient', options=patient_ids, index=len(patient_ids)-1, key='search_patient_id')
|
247 |
-
st.form_submit_button('Predict', type='primary', on_click=on_click, kwargs=dict(
|
248 |
-
func=make_prediction, model_endpoint=model_endpoint))
|
249 |
-
else:
|
250 |
-
with st.form('search_patient_id_bulk_form'):
|
251 |
-
col1, _ = st.columns(2)
|
252 |
-
with col1:
|
253 |
-
st.write('#### Patient ID ๐ค')
|
254 |
-
st.multiselect(
|
255 |
-
'Search a patient', options=patient_ids, default=None, key='patient_id_bulk')
|
256 |
-
st.form_submit_button('Predict', type='primary', on_click=on_click, kwargs=dict(
|
257 |
-
func=make_predictions, model_endpoint=model_endpoint))
|
258 |
-
|
259 |
-
|
260 |
-
async def gen_random_patient_id() -> str:
|
261 |
-
numbers = ''.join(random.choices(string.digits, k=6))
|
262 |
-
letters = ''.join(random.choices(string.ascii_lowercase, k=4))
|
263 |
-
return f"ICU{numbers}-gen-{letters}"
|
264 |
-
|
265 |
-
|
266 |
-
async def manual_patient_form(model_endpoint) -> None:
|
267 |
-
with st.form('manual_patient_form'):
|
268 |
-
|
269 |
-
col1, col2, col3 = st.columns(3)
|
270 |
-
|
271 |
-
with col1:
|
272 |
-
st.write('### Patient Demographics ๐')
|
273 |
-
st.text_input(
|
274 |
-
'ID', value=await gen_random_patient_id(), key='manual_patient_id')
|
275 |
-
st.number_input('Age: patients age (years)', min_value=0,
|
276 |
-
max_value=100, step=1, key='age')
|
277 |
-
st.selectbox('Insurance: If a patient holds a valid insurance card', options=[
|
278 |
-
'Yes', 'No'], key='insurance')
|
279 |
-
|
280 |
-
with col2:
|
281 |
-
st.write('### Vital Signs ๐ฉบ')
|
282 |
-
st.number_input('BMI (weight in kg/(height in m)^2', min_value=10.0,
|
283 |
-
format="%.2f", step=1.00, key='m11')
|
284 |
-
st.number_input(
|
285 |
-
'Blood Pressure (mm Hg)', min_value=10.0, format="%.2f", step=1.00, key='pr')
|
286 |
-
st.number_input(
|
287 |
-
'PRG (plasma glucose)', min_value=10.0, format="%.2f", step=1.00, key='prg')
|
288 |
-
|
289 |
-
with col3:
|
290 |
-
st.write('### Blood Work ๐')
|
291 |
-
st.number_input(
|
292 |
-
'PL: Blood Work Result-1 (mu U/ml)', min_value=10.0, format="%.2f", step=1.00, key='pl')
|
293 |
-
st.number_input(
|
294 |
-
'SK: Blood Work Result 2 (mm)', min_value=10.0, format="%.2f", step=1.00, key='sk')
|
295 |
-
st.number_input(
|
296 |
-
'TS: Blood Work Result-3 (mu U/ml)', min_value=10.0, format="%.2f", step=1.00, key='ts')
|
297 |
-
st.number_input(
|
298 |
-
'BD2: Blood Work Result-4 (mu U/ml)', min_value=10.0, format="%.2f", step=1.00, key='bd2')
|
299 |
-
|
300 |
-
st.form_submit_button('Predict', type='primary', on_click=on_click, kwargs=dict(
|
301 |
-
func=make_prediction, model_endpoint=model_endpoint))
|
302 |
-
|
303 |
-
|
304 |
-
async def do_single_prediction(model_endpoint: str) -> None:
|
305 |
-
if st.session_state.get('search_patient', False):
|
306 |
-
await search_patient_form(model_endpoint)
|
307 |
-
else:
|
308 |
-
await manual_patient_form(model_endpoint)
|
309 |
-
|
310 |
-
|
311 |
-
async def show_prediction() -> None:
|
312 |
-
final_prediction = st.session_state.get('prediction', None)
|
313 |
-
final_probability = st.session_state.get('probability', None)
|
314 |
-
|
315 |
-
if final_prediction is None:
|
316 |
-
st.markdown('#### Prediction will show below! ๐ฌ')
|
317 |
-
st.divider()
|
318 |
-
else:
|
319 |
-
st.markdown('#### Prediction! ๐ฌ')
|
320 |
-
st.divider()
|
321 |
-
if final_prediction.lower() == 'positive':
|
322 |
-
st.toast("Sepsis alert!", icon='๐ฆ ')
|
323 |
-
message = f"It is **{final_probability:.2f} %** likely that the patient will develop **sepsis.**"
|
324 |
-
st.warning(message, icon='๐')
|
325 |
-
time.sleep(5)
|
326 |
-
st.toast(message)
|
327 |
-
else:
|
328 |
-
st.toast("Continous monitoring", icon='๐ฌ')
|
329 |
-
message = f"The patient will **not** develop sepsis with a likelihood of **{final_probability:.2f}%**."
|
330 |
-
st.success(message, icon='๐')
|
331 |
-
time.sleep(
|
332 |
-
st.toast(message)
|
333 |
-
|
334 |
-
# Set prediction and probability to None
|
335 |
-
st.session_state['prediction'] = None
|
336 |
-
st.session_state['probability'] = None
|
337 |
-
|
338 |
-
|
339 |
-
# @st.cache_data(show_spinner=False) Caching results from async functions buggy
|
340 |
-
async def convert_df(df: pd.DataFrame):
|
341 |
-
return df.to_csv(index=False)
|
342 |
-
|
343 |
-
|
344 |
-
async def bulk_upload_widget(model_endpoint: str) -> None:
|
345 |
-
uploaded_file = st.file_uploader(
|
346 |
-
"Choose a CSV or Excel File", type=['csv', 'xls', 'xlsx'])
|
347 |
-
|
348 |
-
uploaded = uploaded_file is not None
|
349 |
-
|
350 |
-
upload_bulk_predict = st.button('Predict', type='primary',
|
351 |
-
help='Upload a csv/excel file to make predictions', disabled=not uploaded, key='upload_bulk_predict')
|
352 |
-
df = None
|
353 |
-
if upload_bulk_predict and uploaded:
|
354 |
-
df_test_raw, _ = await get_test_data()
|
355 |
-
# Uploadfile is a "file-like" object is accepted
|
356 |
-
try:
|
357 |
-
try:
|
358 |
-
df = pd.read_csv(uploaded_file)
|
359 |
-
except Exception:
|
360 |
-
df = pd.read_excel(uploaded_file)
|
361 |
-
|
362 |
-
df_columns = set(df.columns)
|
363 |
-
df_test_columns = set(df_test_raw.columns)
|
364 |
-
df_schema = df.dtypes
|
365 |
-
df_test_schema = df_test_raw.dtypes
|
366 |
-
|
367 |
-
if df_columns != df_test_columns or not df_schema.equals(df_test_schema):
|
368 |
-
df = None
|
369 |
-
raise Exception
|
370 |
-
else:
|
371 |
-
# Clean dataframe
|
372 |
-
janitor = Janitor()
|
373 |
-
df_clean = janitor.clean_dataframe(df)
|
374 |
-
|
375 |
-
df = await make_predictions(
|
376 |
-
model_endpoint, df_uploaded=df, df_uploaded_clean=df_clean)
|
377 |
-
|
378 |
-
except Exception:
|
379 |
-
st.subheader('Data template')
|
380 |
-
data_template = df_test_raw[:3]
|
381 |
-
st.dataframe(data_template)
|
382 |
-
csv = await convert_df(data_template)
|
383 |
-
message_1 = 'Upload a valid csv or excel file.'
|
384 |
-
message_2 = f"{message_1.split('.')[0]} with the columns and schema of the above data template."
|
385 |
-
icon = '๐'
|
386 |
-
st.toast(message_1, icon=icon)
|
387 |
-
|
388 |
-
st.download_button(
|
389 |
-
label='Download template',
|
390 |
-
data=csv,
|
391 |
-
file_name='Data template.csv',
|
392 |
-
mime="text/csv",
|
393 |
-
type='secondary',
|
394 |
-
key='download-data-template'
|
395 |
-
)
|
396 |
-
st.info('Download the above template for use as a baseline structure.')
|
397 |
-
|
398 |
-
# Display explander to show the data dictionary
|
399 |
-
with st.expander("Expand to see the data dictionary", icon="๐ก"):
|
400 |
-
st.subheader("Data dictionary")
|
401 |
-
st.markdown(markdown_table_all)
|
402 |
-
st.warning(message_2, icon=icon)
|
403 |
-
|
404 |
-
return df
|
405 |
-
|
406 |
-
|
407 |
-
async def do_bulk_prediction(model_endpoint: str) -> None:
|
408 |
-
if st.session_state.get('search_patient', False):
|
409 |
-
await search_patient_form(model_endpoint)
|
410 |
-
else:
|
411 |
-
# File uploader
|
412 |
-
await bulk_upload_widget(model_endpoint)
|
413 |
-
|
414 |
-
|
415 |
-
async def show_bulk_predictions(df: pd.DataFrame) -> None:
|
416 |
-
if df is not None:
|
417 |
-
st.subheader("Bulk predictions ๐ฎ", divider=True)
|
418 |
-
st.dataframe(df.astype(str))
|
419 |
-
|
420 |
-
csv = await convert_df(df)
|
421 |
-
message = 'The predictions are ready for download.'
|
422 |
-
icon = 'โฌ๏ธ'
|
423 |
-
st.toast(message, icon=icon)
|
424 |
-
st.info(message, icon=icon)
|
425 |
-
st.download_button(
|
426 |
-
label='Download predictions',
|
427 |
-
data=csv,
|
428 |
-
file_name='Bulk prediction.csv',
|
429 |
-
mime="text/csv",
|
430 |
-
type='secondary',
|
431 |
-
key='download-bulk-prediction'
|
432 |
-
)
|
433 |
-
|
434 |
-
# Set bulk prediction df to None
|
435 |
-
st.session_state['bulk_prediction_df'] = None
|
436 |
-
|
437 |
-
|
438 |
-
async def sidebar(sidebar_type: str) -> st.sidebar:
|
439 |
-
return st.session_state.update({'sidebar': sidebar_type})
|
440 |
-
|
441 |
-
|
442 |
-
async def main():
|
443 |
-
st.title("๐ค Predict Sepsis ๐ฆ ")
|
444 |
-
|
445 |
-
# Navigation
|
446 |
-
await navigation()
|
447 |
-
|
448 |
-
st.sidebar.toggle("Looking for a patient?", value=st.session_state.get(
|
449 |
-
'search_patient', False), key='search_patient')
|
450 |
-
|
451 |
-
selected_model = await select_model()
|
452 |
-
model_endpoint = await endpoint(selected_model)
|
453 |
-
|
454 |
-
selected_predict_tab = st.session_state.get('selected_predict_tab')
|
455 |
-
default = 1 if selected_predict_tab is None else selected_predict_tab
|
456 |
-
|
457 |
-
with st.spinner('A little house keeping...'):
|
458 |
-
time.sleep(st.session_state.get('sleep', 1.5))
|
459 |
-
chosen_id = stx.tab_bar(data=[
|
460 |
-
stx.TabBarItemData(id=1, title='๐ฌ Predict', description=''),
|
461 |
-
stx.TabBarItemData(id=2, title='๐ฎ Bulk predict',
|
462 |
-
description=''),
|
463 |
-
], default=default)
|
464 |
-
st.session_state['sleep'] = 0
|
465 |
-
|
466 |
-
if chosen_id == '1':
|
467 |
-
await sidebar('single_prediction')
|
468 |
-
await do_single_prediction(model_endpoint)
|
469 |
-
await show_prediction()
|
470 |
-
|
471 |
-
elif chosen_id == '2':
|
472 |
-
await sidebar('bulk_prediction')
|
473 |
-
df_with_predictions = await do_bulk_prediction(model_endpoint)
|
474 |
-
if df_with_predictions is None:
|
475 |
-
df_with_predictions = st.session_state.get(
|
476 |
-
'bulk_prediction_df', None)
|
477 |
-
await show_bulk_predictions(df_with_predictions)
|
478 |
-
|
479 |
-
# Add footer
|
480 |
-
await footer()
|
481 |
-
|
482 |
-
|
483 |
-
if __name__ == "__main__":
|
484 |
-
asyncio.run(main())
|
|
|
1 |
+
import os
|
2 |
+
import time
|
3 |
+
import httpx
|
4 |
+
import string
|
5 |
+
import random
|
6 |
+
import datetime as dt
|
7 |
+
from dotenv import load_dotenv
|
8 |
+
|
9 |
+
import streamlit as st
|
10 |
+
import extra_streamlit_components as stx
|
11 |
+
|
12 |
+
import asyncio
|
13 |
+
from aiocache import cached, Cache
|
14 |
+
|
15 |
+
import pandas as pd
|
16 |
+
from typing import Optional, Callable
|
17 |
+
|
18 |
+
from config import ENV_PATH, BEST_MODELS, TEST_FILE, TEST_FILE_URL, HISTORY_FILE, markdown_table_all
|
19 |
+
|
20 |
+
from utils.navigation import navigation
|
21 |
+
from utils.footer import footer
|
22 |
+
from utils.janitor import Janitor
|
23 |
+
|
24 |
+
|
25 |
+
# Load ENV
|
26 |
+
load_dotenv(ENV_PATH) # API_URL
|
27 |
+
|
28 |
+
# Set page configuration
|
29 |
+
st.set_page_config(
|
30 |
+
page_title="Homepage",
|
31 |
+
page_icon="๐ค",
|
32 |
+
layout="wide",
|
33 |
+
initial_sidebar_state='auto'
|
34 |
+
)
|
35 |
+
|
36 |
+
|
37 |
+
@cached(ttl=10, cache=Cache.MEMORY, namespace='streamlit_savedataset')
|
38 |
+
# @st.cache_data(show_spinner="Saving datasets...") # Streamlit cache is yet to support async functions
|
39 |
+
async def save_dataset(df: pd.DataFrame, filepath, csv=True) -> None:
|
40 |
+
async def save(df: pd.DataFrame, file):
|
41 |
+
return df.to_csv(file, index=False) if csv else df.to_excel(file, index=False)
|
42 |
+
|
43 |
+
async def read(file):
|
44 |
+
return pd.read_csv(file) if csv else pd.read_excel(file)
|
45 |
+
|
46 |
+
async def same_dfs(df: pd.DataFrame, df2: pd.DataFrame):
|
47 |
+
return df.equals(df2)
|
48 |
+
|
49 |
+
if not os.path.isfile(filepath): # Save if file does not exists
|
50 |
+
await save(df, filepath)
|
51 |
+
else: # Save if data are not same
|
52 |
+
df_old = await read(filepath)
|
53 |
+
if not await same_dfs(df, df_old):
|
54 |
+
await save(df, filepath)
|
55 |
+
|
56 |
+
|
57 |
+
@cached(ttl=10, cache=Cache.MEMORY, namespace='streamlit_testdata')
|
58 |
+
async def get_test_data():
|
59 |
+
try:
|
60 |
+
df_test_raw = pd.read_csv(TEST_FILE_URL)
|
61 |
+
await save_dataset(df_test_raw, TEST_FILE, csv=True)
|
62 |
+
except Exception:
|
63 |
+
df_test_raw = pd.read_csv(TEST_FILE)
|
64 |
+
|
65 |
+
# Some house keeping, clean df
|
66 |
+
df_test = df_test_raw.copy()
|
67 |
+
janitor = Janitor()
|
68 |
+
df_test = janitor.clean_dataframe(df_test) # Cleaned
|
69 |
+
|
70 |
+
return df_test_raw, df_test
|
71 |
+
|
72 |
+
|
73 |
+
# Function for selecting models
|
74 |
+
async def select_model() -> str:
|
75 |
+
col1, _ = st.columns(2)
|
76 |
+
with col1:
|
77 |
+
selected_model = st.selectbox(
|
78 |
+
'Select a model', options=BEST_MODELS, key='selected_model')
|
79 |
+
|
80 |
+
return selected_model
|
81 |
+
|
82 |
+
|
83 |
+
async def endpoint(model: str) -> str:
|
84 |
+
api_url = os.getenv("API_URL")
|
85 |
+
model_endpoint = f"{api_url}={model}"
|
86 |
+
return model_endpoint
|
87 |
+
|
88 |
+
|
89 |
+
# Function for making prediction
|
90 |
+
async def make_prediction(model_endpoint) -> Optional[pd.DataFrame]:
|
91 |
+
|
92 |
+
test_data = await get_test_data()
|
93 |
+
_, df_test = test_data
|
94 |
+
|
95 |
+
df: pd.DataFrame = None
|
96 |
+
search_patient = st.session_state.get('search_patient', False)
|
97 |
+
search_patient_id = st.session_state.get('search_patient_id', False)
|
98 |
+
manual_patient_id = st.session_state.get('manual_patient_id', False)
|
99 |
+
if isinstance(search_patient_id, str) and search_patient_id: # And not empty string
|
100 |
+
search_patient_id = [search_patient_id]
|
101 |
+
if search_patient and search_patient_id: # Search Form df and a patient was selected
|
102 |
+
mask = df_test['id'].isin(search_patient_id)
|
103 |
+
df_form = df_test[mask]
|
104 |
+
df = df_form.copy()
|
105 |
+
elif not (search_patient or search_patient_id) and manual_patient_id: # Manual form df
|
106 |
+
columns = ['manual_patient_id', 'prg', 'pl', 'pr', 'sk',
|
107 |
+
'ts', 'm11', 'bd2', 'age', 'insurance']
|
108 |
+
data = {c: [st.session_state.get(c)] for c in columns}
|
109 |
+
data['insurance'] = [1 if i == 'Yes' else 0 for i in data['insurance']]
|
110 |
+
|
111 |
+
# Make a DataFrame
|
112 |
+
df = pd.DataFrame(data).rename(
|
113 |
+
columns={'manual_patient_id': 'id'})
|
114 |
+
columns_int = ['prg', 'pl', 'pr', 'sk', 'ts', 'age']
|
115 |
+
columns_float = ['m11', 'bd2']
|
116 |
+
|
117 |
+
df[columns_int] = df[columns_int].astype(int)
|
118 |
+
df[columns_float] = df[columns_float].astype(float)
|
119 |
+
else: # Form did not send a patient
|
120 |
+
message = 'You must choose valid patient(s) from the select box.'
|
121 |
+
icon = '๐'
|
122 |
+
st.toast(message, icon=icon)
|
123 |
+
st.warning(message, icon=icon)
|
124 |
+
|
125 |
+
if df is not None:
|
126 |
+
try:
|
127 |
+
# JSON data
|
128 |
+
data = df.to_dict(orient='list')
|
129 |
+
|
130 |
+
# Send POST request with JSON data using the json parameter
|
131 |
+
async with httpx.AsyncClient() as client:
|
132 |
+
response = await client.post(model_endpoint, json=data, timeout=30)
|
133 |
+
response.raise_for_status() # Ensure we catch any HTTP errors
|
134 |
+
|
135 |
+
if (response.status_code == 200):
|
136 |
+
pred_prob = (response.json()['result'])
|
137 |
+
prediction = pred_prob['prediction'][0]
|
138 |
+
probability = pred_prob['probability'][0]
|
139 |
+
|
140 |
+
# Store results in session state
|
141 |
+
st.session_state['prediction'] = prediction
|
142 |
+
st.session_state['probability'] = probability
|
143 |
+
df['prediction'] = prediction
|
144 |
+
df['probability (%)'] = probability
|
145 |
+
df['time_of_prediction'] = pd.Timestamp(dt.datetime.now())
|
146 |
+
df['model_used'] = st.session_state['selected_model']
|
147 |
+
|
148 |
+
df.to_csv(HISTORY_FILE, mode='a',
|
149 |
+
header=not os.path.isfile(HISTORY_FILE))
|
150 |
+
except Exception as e:
|
151 |
+
st.error(f'๐ Unable to connect to the API server. {e}')
|
152 |
+
|
153 |
+
return df
|
154 |
+
|
155 |
+
|
156 |
+
async def convert_string(df: pd.DataFrame, string: str) -> str:
|
157 |
+
return string.upper() if all(col.isupper() for col in df.columns) else string
|
158 |
+
|
159 |
+
|
160 |
+
async def make_predictions(model_endpoint, df_uploaded=None, df_uploaded_clean=None) -> Optional[pd.DataFrame]:
|
161 |
+
|
162 |
+
df: pd.DataFrame = None
|
163 |
+
search_patient = st.session_state.get('search_patient', False)
|
164 |
+
patient_id_bulk = st.session_state.get('patient_id_bulk', False)
|
165 |
+
upload_bulk_predict = st.session_state.get('upload_bulk_predict', False)
|
166 |
+
if search_patient and patient_id_bulk: # Search Form df and a patient was selected
|
167 |
+
_, df_test = await get_test_data()
|
168 |
+
mask = df_test['id'].isin(patient_id_bulk)
|
169 |
+
df_bulk: pd.DataFrame = df_test[mask]
|
170 |
+
df = df_bulk.copy()
|
171 |
+
|
172 |
+
elif not (search_patient or patient_id_bulk) and upload_bulk_predict: # Upload widget df
|
173 |
+
df = df_uploaded_clean.copy()
|
174 |
+
else: # Form did not send a patient
|
175 |
+
message = 'You must choose valid patient(s) from the select box.'
|
176 |
+
icon = '๐'
|
177 |
+
st.toast(message, icon=icon)
|
178 |
+
st.warning(message, icon=icon)
|
179 |
+
|
180 |
+
if df is not None: # df should be set by form input or upload widget
|
181 |
+
try:
|
182 |
+
# JSON data
|
183 |
+
data = df.to_dict(orient='list')
|
184 |
+
|
185 |
+
# Send POST request with JSON data using the json parameter
|
186 |
+
async with httpx.AsyncClient() as client:
|
187 |
+
response = await client.post(model_endpoint, json=data, timeout=30)
|
188 |
+
response.raise_for_status() # Ensure we catch any HTTP errors
|
189 |
+
|
190 |
+
if (response.status_code == 200):
|
191 |
+
pred_prob = (response.json()['result'])
|
192 |
+
predictions = pred_prob['prediction']
|
193 |
+
probabilities = pred_prob['probability']
|
194 |
+
|
195 |
+
# Add columns sepsis, probability, time, and model used to uploaded df and form df
|
196 |
+
|
197 |
+
async def add_columns(df):
|
198 |
+
df[await convert_string(df, 'sepsis')] = predictions
|
199 |
+
df[await convert_string(df, 'probability_(%)')] = probabilities
|
200 |
+
df[await convert_string(df, 'time_of_prediction')
|
201 |
+
] = pd.Timestamp(dt.datetime.now())
|
202 |
+
df[await convert_string(df, 'model_used')
|
203 |
+
] = st.session_state['selected_model']
|
204 |
+
|
205 |
+
return df
|
206 |
+
|
207 |
+
# Form df if search patient is true or df from Uploaded data
|
208 |
+
if search_patient:
|
209 |
+
df = await add_columns(df)
|
210 |
+
|
211 |
+
df.to_csv(HISTORY_FILE, mode='a', header=not os.path.isfile(
|
212 |
+
HISTORY_FILE)) # Save only known patients
|
213 |
+
|
214 |
+
else:
|
215 |
+
df = await add_columns(df_uploaded) # Raw, No cleaning
|
216 |
+
|
217 |
+
# Store df with prediction results in session state
|
218 |
+
st.session_state['bulk_prediction_df'] = df
|
219 |
+
except Exception as e:
|
220 |
+
st.error(f'๐ Unable to connect to the API server. {e}')
|
221 |
+
|
222 |
+
return df
|
223 |
+
|
224 |
+
|
225 |
+
def on_click(func: Callable, model_endpoint: str):
|
226 |
+
async def handle_click():
|
227 |
+
await func(model_endpoint)
|
228 |
+
|
229 |
+
loop = asyncio.new_event_loop()
|
230 |
+
asyncio.set_event_loop(loop)
|
231 |
+
loop.run_until_complete(handle_click())
|
232 |
+
loop.close()
|
233 |
+
|
234 |
+
|
235 |
+
async def search_patient_form(model_endpoint: str) -> None:
|
236 |
+
test_data = await get_test_data()
|
237 |
+
_, df_test = test_data
|
238 |
+
|
239 |
+
patient_ids = df_test['id'].unique().tolist()+['']
|
240 |
+
if st.session_state['sidebar'] == 'single_prediction':
|
241 |
+
with st.form('search_patient_id_form'):
|
242 |
+
col1, _ = st.columns(2)
|
243 |
+
with col1:
|
244 |
+
st.write('#### Patient ID ๐ค')
|
245 |
+
st.selectbox(
|
246 |
+
'Search a patient', options=patient_ids, index=len(patient_ids)-1, key='search_patient_id')
|
247 |
+
st.form_submit_button('Predict', type='primary', on_click=on_click, kwargs=dict(
|
248 |
+
func=make_prediction, model_endpoint=model_endpoint))
|
249 |
+
else:
|
250 |
+
with st.form('search_patient_id_bulk_form'):
|
251 |
+
col1, _ = st.columns(2)
|
252 |
+
with col1:
|
253 |
+
st.write('#### Patient ID ๐ค')
|
254 |
+
st.multiselect(
|
255 |
+
'Search a patient', options=patient_ids, default=None, key='patient_id_bulk')
|
256 |
+
st.form_submit_button('Predict', type='primary', on_click=on_click, kwargs=dict(
|
257 |
+
func=make_predictions, model_endpoint=model_endpoint))
|
258 |
+
|
259 |
+
|
260 |
+
async def gen_random_patient_id() -> str:
|
261 |
+
numbers = ''.join(random.choices(string.digits, k=6))
|
262 |
+
letters = ''.join(random.choices(string.ascii_lowercase, k=4))
|
263 |
+
return f"ICU{numbers}-gen-{letters}"
|
264 |
+
|
265 |
+
|
266 |
+
async def manual_patient_form(model_endpoint) -> None:
|
267 |
+
with st.form('manual_patient_form'):
|
268 |
+
|
269 |
+
col1, col2, col3 = st.columns(3)
|
270 |
+
|
271 |
+
with col1:
|
272 |
+
st.write('### Patient Demographics ๐')
|
273 |
+
st.text_input(
|
274 |
+
'ID', value=await gen_random_patient_id(), key='manual_patient_id')
|
275 |
+
st.number_input('Age: patients age (years)', min_value=0,
|
276 |
+
max_value=100, step=1, key='age')
|
277 |
+
st.selectbox('Insurance: If a patient holds a valid insurance card', options=[
|
278 |
+
'Yes', 'No'], key='insurance')
|
279 |
+
|
280 |
+
with col2:
|
281 |
+
st.write('### Vital Signs ๐ฉบ')
|
282 |
+
st.number_input('BMI (weight in kg/(height in m)^2', min_value=10.0,
|
283 |
+
format="%.2f", step=1.00, key='m11')
|
284 |
+
st.number_input(
|
285 |
+
'Blood Pressure (mm Hg)', min_value=10.0, format="%.2f", step=1.00, key='pr')
|
286 |
+
st.number_input(
|
287 |
+
'PRG (plasma glucose)', min_value=10.0, format="%.2f", step=1.00, key='prg')
|
288 |
+
|
289 |
+
with col3:
|
290 |
+
st.write('### Blood Work ๐')
|
291 |
+
st.number_input(
|
292 |
+
'PL: Blood Work Result-1 (mu U/ml)', min_value=10.0, format="%.2f", step=1.00, key='pl')
|
293 |
+
st.number_input(
|
294 |
+
'SK: Blood Work Result 2 (mm)', min_value=10.0, format="%.2f", step=1.00, key='sk')
|
295 |
+
st.number_input(
|
296 |
+
'TS: Blood Work Result-3 (mu U/ml)', min_value=10.0, format="%.2f", step=1.00, key='ts')
|
297 |
+
st.number_input(
|
298 |
+
'BD2: Blood Work Result-4 (mu U/ml)', min_value=10.0, format="%.2f", step=1.00, key='bd2')
|
299 |
+
|
300 |
+
st.form_submit_button('Predict', type='primary', on_click=on_click, kwargs=dict(
|
301 |
+
func=make_prediction, model_endpoint=model_endpoint))
|
302 |
+
|
303 |
+
|
304 |
+
async def do_single_prediction(model_endpoint: str) -> None:
|
305 |
+
if st.session_state.get('search_patient', False):
|
306 |
+
await search_patient_form(model_endpoint)
|
307 |
+
else:
|
308 |
+
await manual_patient_form(model_endpoint)
|
309 |
+
|
310 |
+
|
311 |
+
async def show_prediction() -> None:
|
312 |
+
final_prediction = st.session_state.get('prediction', None)
|
313 |
+
final_probability = st.session_state.get('probability', None)
|
314 |
+
|
315 |
+
if final_prediction is None:
|
316 |
+
st.markdown('#### Prediction will show below! ๐ฌ')
|
317 |
+
st.divider()
|
318 |
+
else:
|
319 |
+
st.markdown('#### Prediction! ๐ฌ')
|
320 |
+
st.divider()
|
321 |
+
if final_prediction.lower() == 'positive':
|
322 |
+
st.toast("Sepsis alert!", icon='๐ฆ ')
|
323 |
+
message = f"It is **{final_probability:.2f} %** likely that the patient will develop **sepsis.**"
|
324 |
+
st.warning(message, icon='๐')
|
325 |
+
time.sleep(5)
|
326 |
+
st.toast(message)
|
327 |
+
else:
|
328 |
+
st.toast("Continous monitoring", icon='๐ฌ')
|
329 |
+
message = f"The patient will **not** develop sepsis with a likelihood of **{final_probability:.2f}%**."
|
330 |
+
st.success(message, icon='๐')
|
331 |
+
time.sleep(1)
|
332 |
+
st.toast(message)
|
333 |
+
|
334 |
+
# Set prediction and probability to None
|
335 |
+
st.session_state['prediction'] = None
|
336 |
+
st.session_state['probability'] = None
|
337 |
+
|
338 |
+
|
339 |
+
# @st.cache_data(show_spinner=False) Caching results from async functions buggy
|
340 |
+
async def convert_df(df: pd.DataFrame):
|
341 |
+
return df.to_csv(index=False)
|
342 |
+
|
343 |
+
|
344 |
+
async def bulk_upload_widget(model_endpoint: str) -> None:
|
345 |
+
uploaded_file = st.file_uploader(
|
346 |
+
"Choose a CSV or Excel File", type=['csv', 'xls', 'xlsx'])
|
347 |
+
|
348 |
+
uploaded = uploaded_file is not None
|
349 |
+
|
350 |
+
upload_bulk_predict = st.button('Predict', type='primary',
|
351 |
+
help='Upload a csv/excel file to make predictions', disabled=not uploaded, key='upload_bulk_predict')
|
352 |
+
df = None
|
353 |
+
if upload_bulk_predict and uploaded:
|
354 |
+
df_test_raw, _ = await get_test_data()
|
355 |
+
# Uploadfile is a "file-like" object is accepted
|
356 |
+
try:
|
357 |
+
try:
|
358 |
+
df = pd.read_csv(uploaded_file)
|
359 |
+
except Exception:
|
360 |
+
df = pd.read_excel(uploaded_file)
|
361 |
+
|
362 |
+
df_columns = set(df.columns)
|
363 |
+
df_test_columns = set(df_test_raw.columns)
|
364 |
+
df_schema = df.dtypes
|
365 |
+
df_test_schema = df_test_raw.dtypes
|
366 |
+
|
367 |
+
if df_columns != df_test_columns or not df_schema.equals(df_test_schema):
|
368 |
+
df = None
|
369 |
+
raise Exception
|
370 |
+
else:
|
371 |
+
# Clean dataframe
|
372 |
+
janitor = Janitor()
|
373 |
+
df_clean = janitor.clean_dataframe(df)
|
374 |
+
|
375 |
+
df = await make_predictions(
|
376 |
+
model_endpoint, df_uploaded=df, df_uploaded_clean=df_clean)
|
377 |
+
|
378 |
+
except Exception:
|
379 |
+
st.subheader('Data template')
|
380 |
+
data_template = df_test_raw[:3]
|
381 |
+
st.dataframe(data_template)
|
382 |
+
csv = await convert_df(data_template)
|
383 |
+
message_1 = 'Upload a valid csv or excel file.'
|
384 |
+
message_2 = f"{message_1.split('.')[0]} with the columns and schema of the above data template."
|
385 |
+
icon = '๐'
|
386 |
+
st.toast(message_1, icon=icon)
|
387 |
+
|
388 |
+
st.download_button(
|
389 |
+
label='Download template',
|
390 |
+
data=csv,
|
391 |
+
file_name='Data template.csv',
|
392 |
+
mime="text/csv",
|
393 |
+
type='secondary',
|
394 |
+
key='download-data-template'
|
395 |
+
)
|
396 |
+
st.info('Download the above template for use as a baseline structure.')
|
397 |
+
|
398 |
+
# Display explander to show the data dictionary
|
399 |
+
with st.expander("Expand to see the data dictionary", icon="๐ก"):
|
400 |
+
st.subheader("Data dictionary")
|
401 |
+
st.markdown(markdown_table_all)
|
402 |
+
st.warning(message_2, icon=icon)
|
403 |
+
|
404 |
+
return df
|
405 |
+
|
406 |
+
|
407 |
+
async def do_bulk_prediction(model_endpoint: str) -> None:
|
408 |
+
if st.session_state.get('search_patient', False):
|
409 |
+
await search_patient_form(model_endpoint)
|
410 |
+
else:
|
411 |
+
# File uploader
|
412 |
+
await bulk_upload_widget(model_endpoint)
|
413 |
+
|
414 |
+
|
415 |
+
async def show_bulk_predictions(df: pd.DataFrame) -> None:
|
416 |
+
if df is not None:
|
417 |
+
st.subheader("Bulk predictions ๐ฎ", divider=True)
|
418 |
+
st.dataframe(df.astype(str))
|
419 |
+
|
420 |
+
csv = await convert_df(df)
|
421 |
+
message = 'The predictions are ready for download.'
|
422 |
+
icon = 'โฌ๏ธ'
|
423 |
+
st.toast(message, icon=icon)
|
424 |
+
st.info(message, icon=icon)
|
425 |
+
st.download_button(
|
426 |
+
label='Download predictions',
|
427 |
+
data=csv,
|
428 |
+
file_name='Bulk prediction.csv',
|
429 |
+
mime="text/csv",
|
430 |
+
type='secondary',
|
431 |
+
key='download-bulk-prediction'
|
432 |
+
)
|
433 |
+
|
434 |
+
# Set bulk prediction df to None
|
435 |
+
st.session_state['bulk_prediction_df'] = None
|
436 |
+
|
437 |
+
|
438 |
+
async def sidebar(sidebar_type: str) -> st.sidebar:
|
439 |
+
return st.session_state.update({'sidebar': sidebar_type})
|
440 |
+
|
441 |
+
|
442 |
+
async def main():
|
443 |
+
st.title("๐ค Predict Sepsis ๐ฆ ")
|
444 |
+
|
445 |
+
# Navigation
|
446 |
+
await navigation()
|
447 |
+
|
448 |
+
st.sidebar.toggle("Looking for a patient?", value=st.session_state.get(
|
449 |
+
'search_patient', False), key='search_patient')
|
450 |
+
|
451 |
+
selected_model = await select_model()
|
452 |
+
model_endpoint = await endpoint(selected_model)
|
453 |
+
|
454 |
+
selected_predict_tab = st.session_state.get('selected_predict_tab')
|
455 |
+
default = 1 if selected_predict_tab is None else selected_predict_tab
|
456 |
+
|
457 |
+
with st.spinner('A little house keeping...'):
|
458 |
+
time.sleep(st.session_state.get('sleep', 1.5))
|
459 |
+
chosen_id = stx.tab_bar(data=[
|
460 |
+
stx.TabBarItemData(id=1, title='๐ฌ Predict', description=''),
|
461 |
+
stx.TabBarItemData(id=2, title='๐ฎ Bulk predict',
|
462 |
+
description=''),
|
463 |
+
], default=default)
|
464 |
+
st.session_state['sleep'] = 0
|
465 |
+
|
466 |
+
if chosen_id == '1':
|
467 |
+
await sidebar('single_prediction')
|
468 |
+
await do_single_prediction(model_endpoint)
|
469 |
+
await show_prediction()
|
470 |
+
|
471 |
+
elif chosen_id == '2':
|
472 |
+
await sidebar('bulk_prediction')
|
473 |
+
df_with_predictions = await do_bulk_prediction(model_endpoint)
|
474 |
+
if df_with_predictions is None:
|
475 |
+
df_with_predictions = st.session_state.get(
|
476 |
+
'bulk_prediction_df', None)
|
477 |
+
await show_bulk_predictions(df_with_predictions)
|
478 |
+
|
479 |
+
# Add footer
|
480 |
+
await footer()
|
481 |
+
|
482 |
+
|
483 |
+
if __name__ == "__main__":
|
484 |
+
asyncio.run(main())
|