Spaces:
Running
Running
Update main.py
Browse filesUpdate to use XGBRegressor as the most performance-inclined model compared to RandomForestRegressor
main.py
CHANGED
@@ -1,177 +1,177 @@
|
|
1 |
-
import os
|
2 |
-
from dotenv import load_dotenv
|
3 |
-
|
4 |
-
from collections.abc import AsyncIterator
|
5 |
-
from contextlib import asynccontextmanager
|
6 |
-
|
7 |
-
from fastapi import FastAPI, Query
|
8 |
-
from fastapi.responses import FileResponse
|
9 |
-
from fastapi.staticfiles import StaticFiles
|
10 |
-
from fastapi_cache import FastAPICache
|
11 |
-
from fastapi_cache.backends.inmemory import InMemoryBackend
|
12 |
-
from fastapi_cache.coder import PickleCoder
|
13 |
-
from fastapi_cache.decorator import cache
|
14 |
-
import logging
|
15 |
-
|
16 |
-
from pydantic import BaseModel, Field
|
17 |
-
from typing import List, Union, Optional
|
18 |
-
from datetime import datetime
|
19 |
-
|
20 |
-
from sklearn.pipeline import Pipeline
|
21 |
-
import joblib
|
22 |
-
|
23 |
-
import pandas as pd
|
24 |
-
|
25 |
-
import httpx
|
26 |
-
from io import BytesIO
|
27 |
-
|
28 |
-
|
29 |
-
from utils.config import (
|
30 |
-
ONE_DAY_SEC,
|
31 |
-
ONE_WEEK_SEC,
|
32 |
-
ENV_PATH,
|
33 |
-
DESCRIPTION,
|
34 |
-
ALL_MODELS
|
35 |
-
)
|
36 |
-
|
37 |
-
load_dotenv(ENV_PATH)
|
38 |
-
|
39 |
-
|
40 |
-
@asynccontextmanager
|
41 |
-
async def lifespan(_: FastAPI) -> AsyncIterator[None]:
|
42 |
-
FastAPICache.init(InMemoryBackend())
|
43 |
-
yield
|
44 |
-
|
45 |
-
|
46 |
-
# FastAPI Object
|
47 |
-
app = FastAPI(
|
48 |
-
title='Yassir Eta Prediction',
|
49 |
-
version='1.0.0',
|
50 |
-
description=DESCRIPTION,
|
51 |
-
lifespan=lifespan,
|
52 |
-
)
|
53 |
-
|
54 |
-
app.mount("/assets", StaticFiles(directory="assets"), name="assets")
|
55 |
-
|
56 |
-
|
57 |
-
@app.get('/favicon.ico', include_in_schema=False)
|
58 |
-
@cache(expire=ONE_WEEK_SEC, namespace='eta_favicon') # Cache for 1 week
|
59 |
-
async def favicon():
|
60 |
-
file_name = "favicon.ico"
|
61 |
-
file_path = os.path.join(app.root_path, "assets", file_name)
|
62 |
-
return FileResponse(path=file_path, headers={"Content-Disposition": "attachment; filename=" + file_name})
|
63 |
-
|
64 |
-
|
65 |
-
# API input features
|
66 |
-
|
67 |
-
|
68 |
-
class EtaFeatures(BaseModel):
|
69 |
-
timestamp: List[datetime] = Field(
|
70 |
-
description="Timestamp: Time that the trip was started")
|
71 |
-
origin_lat: List[float] = Field(
|
72 |
-
description="Origin_lat: Origin latitude (in degrees)")
|
73 |
-
origin_lon: List[float] = Field(
|
74 |
-
description="Origin_lon: Origin longitude (in degrees)")
|
75 |
-
destination_lat: List[float] = Field(
|
76 |
-
description="Destination_lat: Destination latitude (in degrees)")
|
77 |
-
destination_lon: List[float] = Field(
|
78 |
-
description="Destination_lon: Destination longitude (in degrees)")
|
79 |
-
trip_distance: List[float] = Field(
|
80 |
-
description="Trip_distance: Distance in meters on a driving route")
|
81 |
-
|
82 |
-
|
83 |
-
class Url(BaseModel):
|
84 |
-
url: str
|
85 |
-
pipeline_url: str
|
86 |
-
|
87 |
-
|
88 |
-
class ResultData(BaseModel):
|
89 |
-
prediction: List[float]
|
90 |
-
|
91 |
-
|
92 |
-
class PredictionResponse(BaseModel):
|
93 |
-
execution_msg: str
|
94 |
-
execution_code: int
|
95 |
-
result: ResultData
|
96 |
-
|
97 |
-
|
98 |
-
class ErrorResponse(BaseModel):
|
99 |
-
execution_msg: str
|
100 |
-
execution_code: int
|
101 |
-
error: Optional[str]
|
102 |
-
|
103 |
-
|
104 |
-
logging.basicConfig(level=logging.ERROR,
|
105 |
-
format='%(asctime)s - %(levelname)s - %(message)s')
|
106 |
-
|
107 |
-
|
108 |
-
# Load the model pipelines and encoder
|
109 |
-
# Cache for 1 day
|
110 |
-
@cache(expire=ONE_DAY_SEC, namespace='pipeline_resource', coder=PickleCoder)
|
111 |
-
async def load_pipeline(pipeline_url: Url) -> Pipeline:
|
112 |
-
async def url_to_data(url: Url):
|
113 |
-
async with httpx.AsyncClient() as client:
|
114 |
-
response = await client.get(url)
|
115 |
-
response.raise_for_status() # Ensure we catch any HTTP errors
|
116 |
-
# Convert response content to BytesIO object
|
117 |
-
data = BytesIO(response.content)
|
118 |
-
return data
|
119 |
-
|
120 |
-
pipeline = None
|
121 |
-
try:
|
122 |
-
pipeline: Pipeline = joblib.load(await url_to_data(pipeline_url))
|
123 |
-
except Exception as e:
|
124 |
-
logging.error(
|
125 |
-
"Omg, an error occurred in loading the pipeline resources: %s", e)
|
126 |
-
finally:
|
127 |
-
return pipeline
|
128 |
-
|
129 |
-
|
130 |
-
# Endpoints
|
131 |
-
|
132 |
-
# Status endpoint: check if api is online
|
133 |
-
@app.get('/')
|
134 |
-
@cache(expire=ONE_WEEK_SEC, namespace='eta_status_check') # Cache for 1 week
|
135 |
-
async def status_check():
|
136 |
-
return {"Status": "API is online..."}
|
137 |
-
|
138 |
-
|
139 |
-
@cache(expire=ONE_DAY_SEC, namespace='pipeline_regressor') # Cache for 1 day
|
140 |
-
async def pipeline_regressor(pipeline: Pipeline, data: EtaFeatures) -> Union[ErrorResponse, PredictionResponse]:
|
141 |
-
msg = 'Execution failed'
|
142 |
-
code = 0
|
143 |
-
output = ErrorResponse(**{'execution_msg': msg,
|
144 |
-
'execution_code': code, 'error': None})
|
145 |
-
|
146 |
-
try:
|
147 |
-
# Create dataframe
|
148 |
-
df = pd.DataFrame.from_dict(data.__dict__)
|
149 |
-
|
150 |
-
# Make prediction
|
151 |
-
preds = pipeline.predict(df)
|
152 |
-
predictions = [float(pred) for pred in preds]
|
153 |
-
|
154 |
-
result = ResultData(**{"prediction": predictions})
|
155 |
-
|
156 |
-
msg = 'Execution was successful'
|
157 |
-
code = 1
|
158 |
-
output = PredictionResponse(
|
159 |
-
**{'execution_msg': msg,
|
160 |
-
'execution_code': code, 'result': result}
|
161 |
-
)
|
162 |
-
|
163 |
-
except Exception as e:
|
164 |
-
error = f"Omg, pipeline regressor failure. {e}"
|
165 |
-
output = ErrorResponse(**{'execution_msg': msg,
|
166 |
-
'execution_code': code, 'error': error})
|
167 |
-
|
168 |
-
finally:
|
169 |
-
return output
|
170 |
-
|
171 |
-
|
172 |
-
@app.post('/api/v1/eta/prediction', tags=['All Models'])
|
173 |
-
async def query_eta_prediction(data: EtaFeatures, model: str = Query('
|
174 |
-
pipeline_url: Url = ALL_MODELS[model]
|
175 |
-
pipeline = await load_pipeline(pipeline_url)
|
176 |
-
output = await pipeline_regressor(pipeline, data)
|
177 |
-
return output
|
|
|
1 |
+
import os
|
2 |
+
from dotenv import load_dotenv
|
3 |
+
|
4 |
+
from collections.abc import AsyncIterator
|
5 |
+
from contextlib import asynccontextmanager
|
6 |
+
|
7 |
+
from fastapi import FastAPI, Query
|
8 |
+
from fastapi.responses import FileResponse
|
9 |
+
from fastapi.staticfiles import StaticFiles
|
10 |
+
from fastapi_cache import FastAPICache
|
11 |
+
from fastapi_cache.backends.inmemory import InMemoryBackend
|
12 |
+
from fastapi_cache.coder import PickleCoder
|
13 |
+
from fastapi_cache.decorator import cache
|
14 |
+
import logging
|
15 |
+
|
16 |
+
from pydantic import BaseModel, Field
|
17 |
+
from typing import List, Union, Optional
|
18 |
+
from datetime import datetime
|
19 |
+
|
20 |
+
from sklearn.pipeline import Pipeline
|
21 |
+
import joblib
|
22 |
+
|
23 |
+
import pandas as pd
|
24 |
+
|
25 |
+
import httpx
|
26 |
+
from io import BytesIO
|
27 |
+
|
28 |
+
|
29 |
+
from utils.config import (
|
30 |
+
ONE_DAY_SEC,
|
31 |
+
ONE_WEEK_SEC,
|
32 |
+
ENV_PATH,
|
33 |
+
DESCRIPTION,
|
34 |
+
ALL_MODELS
|
35 |
+
)
|
36 |
+
|
37 |
+
load_dotenv(ENV_PATH)
|
38 |
+
|
39 |
+
|
40 |
+
@asynccontextmanager
|
41 |
+
async def lifespan(_: FastAPI) -> AsyncIterator[None]:
|
42 |
+
FastAPICache.init(InMemoryBackend())
|
43 |
+
yield
|
44 |
+
|
45 |
+
|
46 |
+
# FastAPI Object
|
47 |
+
app = FastAPI(
|
48 |
+
title='Yassir Eta Prediction',
|
49 |
+
version='1.0.0',
|
50 |
+
description=DESCRIPTION,
|
51 |
+
lifespan=lifespan,
|
52 |
+
)
|
53 |
+
|
54 |
+
app.mount("/assets", StaticFiles(directory="assets"), name="assets")
|
55 |
+
|
56 |
+
|
57 |
+
@app.get('/favicon.ico', include_in_schema=False)
|
58 |
+
@cache(expire=ONE_WEEK_SEC, namespace='eta_favicon') # Cache for 1 week
|
59 |
+
async def favicon():
|
60 |
+
file_name = "favicon.ico"
|
61 |
+
file_path = os.path.join(app.root_path, "assets", file_name)
|
62 |
+
return FileResponse(path=file_path, headers={"Content-Disposition": "attachment; filename=" + file_name})
|
63 |
+
|
64 |
+
|
65 |
+
# API input features
|
66 |
+
|
67 |
+
|
68 |
+
class EtaFeatures(BaseModel):
|
69 |
+
timestamp: List[datetime] = Field(
|
70 |
+
description="Timestamp: Time that the trip was started")
|
71 |
+
origin_lat: List[float] = Field(
|
72 |
+
description="Origin_lat: Origin latitude (in degrees)")
|
73 |
+
origin_lon: List[float] = Field(
|
74 |
+
description="Origin_lon: Origin longitude (in degrees)")
|
75 |
+
destination_lat: List[float] = Field(
|
76 |
+
description="Destination_lat: Destination latitude (in degrees)")
|
77 |
+
destination_lon: List[float] = Field(
|
78 |
+
description="Destination_lon: Destination longitude (in degrees)")
|
79 |
+
trip_distance: List[float] = Field(
|
80 |
+
description="Trip_distance: Distance in meters on a driving route")
|
81 |
+
|
82 |
+
|
83 |
+
class Url(BaseModel):
|
84 |
+
url: str
|
85 |
+
pipeline_url: str
|
86 |
+
|
87 |
+
|
88 |
+
class ResultData(BaseModel):
|
89 |
+
prediction: List[float]
|
90 |
+
|
91 |
+
|
92 |
+
class PredictionResponse(BaseModel):
|
93 |
+
execution_msg: str
|
94 |
+
execution_code: int
|
95 |
+
result: ResultData
|
96 |
+
|
97 |
+
|
98 |
+
class ErrorResponse(BaseModel):
|
99 |
+
execution_msg: str
|
100 |
+
execution_code: int
|
101 |
+
error: Optional[str]
|
102 |
+
|
103 |
+
|
104 |
+
logging.basicConfig(level=logging.ERROR,
|
105 |
+
format='%(asctime)s - %(levelname)s - %(message)s')
|
106 |
+
|
107 |
+
|
108 |
+
# Load the model pipelines and encoder
|
109 |
+
# Cache for 1 day
|
110 |
+
@cache(expire=ONE_DAY_SEC, namespace='pipeline_resource', coder=PickleCoder)
|
111 |
+
async def load_pipeline(pipeline_url: Url) -> Pipeline:
|
112 |
+
async def url_to_data(url: Url):
|
113 |
+
async with httpx.AsyncClient() as client:
|
114 |
+
response = await client.get(url)
|
115 |
+
response.raise_for_status() # Ensure we catch any HTTP errors
|
116 |
+
# Convert response content to BytesIO object
|
117 |
+
data = BytesIO(response.content)
|
118 |
+
return data
|
119 |
+
|
120 |
+
pipeline = None
|
121 |
+
try:
|
122 |
+
pipeline: Pipeline = joblib.load(await url_to_data(pipeline_url))
|
123 |
+
except Exception as e:
|
124 |
+
logging.error(
|
125 |
+
"Omg, an error occurred in loading the pipeline resources: %s", e)
|
126 |
+
finally:
|
127 |
+
return pipeline
|
128 |
+
|
129 |
+
|
130 |
+
# Endpoints
|
131 |
+
|
132 |
+
# Status endpoint: check if api is online
|
133 |
+
@app.get('/')
|
134 |
+
@cache(expire=ONE_WEEK_SEC, namespace='eta_status_check') # Cache for 1 week
|
135 |
+
async def status_check():
|
136 |
+
return {"Status": "API is online..."}
|
137 |
+
|
138 |
+
|
139 |
+
@cache(expire=ONE_DAY_SEC, namespace='pipeline_regressor') # Cache for 1 day
|
140 |
+
async def pipeline_regressor(pipeline: Pipeline, data: EtaFeatures) -> Union[ErrorResponse, PredictionResponse]:
|
141 |
+
msg = 'Execution failed'
|
142 |
+
code = 0
|
143 |
+
output = ErrorResponse(**{'execution_msg': msg,
|
144 |
+
'execution_code': code, 'error': None})
|
145 |
+
|
146 |
+
try:
|
147 |
+
# Create dataframe
|
148 |
+
df = pd.DataFrame.from_dict(data.__dict__)
|
149 |
+
|
150 |
+
# Make prediction
|
151 |
+
preds = pipeline.predict(df)
|
152 |
+
predictions = [float(pred) for pred in preds]
|
153 |
+
|
154 |
+
result = ResultData(**{"prediction": predictions})
|
155 |
+
|
156 |
+
msg = 'Execution was successful'
|
157 |
+
code = 1
|
158 |
+
output = PredictionResponse(
|
159 |
+
**{'execution_msg': msg,
|
160 |
+
'execution_code': code, 'result': result}
|
161 |
+
)
|
162 |
+
|
163 |
+
except Exception as e:
|
164 |
+
error = f"Omg, pipeline regressor failure. {e}"
|
165 |
+
output = ErrorResponse(**{'execution_msg': msg,
|
166 |
+
'execution_code': code, 'error': error})
|
167 |
+
|
168 |
+
finally:
|
169 |
+
return output
|
170 |
+
|
171 |
+
|
172 |
+
@app.post('/api/v1/eta/prediction', tags=['All Models'])
|
173 |
+
async def query_eta_prediction(data: EtaFeatures, model: str = Query('XGBRegressor', enum=list(ALL_MODELS.keys()))) -> Union[ErrorResponse, PredictionResponse]:
|
174 |
+
pipeline_url: Url = ALL_MODELS[model]
|
175 |
+
pipeline = await load_pipeline(pipeline_url)
|
176 |
+
output = await pipeline_regressor(pipeline, data)
|
177 |
+
return output
|