Spaces:
Sleeping
Sleeping
File size: 25,625 Bytes
8f44d6d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 |
from .data import test_df, train_df, weather_df, time_sec_hms, full_time_sec_hms, get_country_geojson
from .config import BRANDCOLORS, BRANDTHEMES, ALL_MODELS
import time
import requests
import requests_cache
from pathlib import Path
from faicons import icon_svg
import pandas as pd
import plotly.io as pio
import plotly.express as px
import plotly.graph_objects as go
from plotly_calplot import calplot
from plotly.subplots import make_subplots
from shiny import reactive, render, Inputs, Outputs, Session
from shiny.express import input, output, module, ui
from shinywidgets import render_plotly, render_widget
# Set pandas to display all columns
pd.set_option("display.max_columns", None)
# High precision longitudes and Latitudes
pd.set_option('display.float_format', '{:.16f}'.format)
# Yassir plotly theme
yassir_theme = pio.templates["plotly_dark"]
yassir_theme.layout.update(
plot_bgcolor=BRANDCOLORS["purple-dark"],
paper_bgcolor=BRANDCOLORS["purple-dark"],
colorway=[BRANDCOLORS["red"], BRANDCOLORS["purple-light"],
BRANDCOLORS["purple-dark"]], # Brand colors
)
pio.templates["yassir_theme"] = yassir_theme
pio.templates.default = yassir_theme
@module
def dashboard_page(input: Inputs, output: Outputs, session: Session):
# Disable loading spinners, use elegant pulse
ui.busy_indicators.use(spinners=False)
ui.panel_title(title=ui.h1(ui.strong("Dashboard π")),
window_title="Yassir Dashboard")
# Link to the external CSS file
ui.tags.link(rel="stylesheet", href="styles.css")
# Add main content
ICONS = {
"eta": icon_svg("clock"),
"distance": icon_svg("route"),
"ellipsis": icon_svg("ellipsis"),
}
# Define the target column
target = 'eta'
# Columns
columns = train_df.columns.to_list()
# Weather columns
w_columns = weather_df.columns.to_list()
# Numericals
numericals = train_df.select_dtypes(include=['number']).columns.tolist()
# Input range
eta_rng = (min(train_df["eta"]), max(train_df["eta"]))
trip_distance_rng = (min(train_df["trip_distance"]),
max(train_df["trip_distance"]))
with ui.layout_sidebar():
with ui.sidebar(open="desktop"):
ui.tags.style("""
.shiny-input-container input[type="range"] {
background: linear-gradient(to right, red, #4CAF50) no-repeat;
height: 8px;
}
"""),
ui.input_slider(
"trip_distance",
"Trip Distance",
min=trip_distance_rng[0],
max=trip_distance_rng[1],
value=trip_distance_rng,
post=" m",
)
ui.input_slider(
"eta",
"ETA",
min=eta_rng[0],
max=eta_rng[1],
value=eta_rng,
post=" sec",
)
ui.input_action_button("reset", "Reset filter")
# KPIs
with ui.layout_column_wrap(fill=False):
with ui.value_box(showcase=ICONS["eta"], theme=BRANDTHEMES['purple-dark']):
"ETA (Total)"
@reactive.calc
def total_eta():
return float(train_data().eta.sum())
@render.text
def ts():
return f"{round(total_eta()):,} s"
@render.text
def thms():
return full_time_sec_hms(total_eta())
with ui.value_box(showcase=ICONS["eta"], theme=BRANDTHEMES['purple-dark']):
"ETA (Median)"
@reactive.calc
def median_eta():
d = train_data()
m_eta = None
if d.shape[0] > 0:
m_eta = d.eta.median()
return m_eta
@render.text
def ms():
return f"{round(median_eta()):,} s"
@render.text
def mhms():
return time_sec_hms(median_eta())
with ui.value_box(showcase=ICONS["distance"], theme=BRANDTHEMES['purple-light']):
"TRIP DISTANCE (Total)"
@reactive.calc
def total_trip():
return float(train_data().trip_distance.sum())
@render.text
def tdkm():
return f"{total_trip()/1000:,.1f} km"
@render.text
def tdm():
return f"{total_trip():,.1f} m"
with ui.value_box(showcase=ICONS["distance"], theme=BRANDTHEMES['purple-light']):
"TRIP DISTANCE (Median)"
@reactive.calc
def median_trip():
d = train_data()
m_trip = None
if d.shape[0] > 0:
m_trip = d.trip_distance.median()
return m_trip
@render.text
def mtdkm():
return f"{median_trip()/1000:,.1f} km"
@render.text
def mtdm():
return f"{median_trip():,.1f} m"
# Dataset view
with ui.layout_column_wrap(fill=False):
with ui.navset_card_pill(id="data_tab"):
with ui.nav_panel("Train data"):
with ui.card(full_screen=True):
ui.card_header("Train data")
@render.data_frame
def train_table():
return render.DataGrid(train_data(), filters=True)
with ui.nav_panel("Test data"):
with ui.card(full_screen=True):
ui.card_header("Test data")
@render.data_frame
def test_table():
return render.DataGrid(test_df)
with ui.nav_panel("Weather data"):
with ui.card(full_screen=True):
ui.card_header("Weather data")
@render.data_frame
def weather_table():
return render.DataGrid(weather_df)
value = "Explore the visualizations"
with ui.accordion(id="plot_acc", open=value):
with ui.accordion_panel(title=ui.strong(value), value=value):
with ui.navset_card_pill(id="eda_tab"):
with ui.nav_panel("Train features"):
with ui.card(full_screen=True):
ui.card_header(
"Correlation in the Train features")
@render_plotly
def train_features():
numeric_correlation_matrix = train_data()[
numericals].corr()
# Create heatmap trace
heatmap_trace = go.Heatmap(
z=numeric_correlation_matrix.values,
x=numeric_correlation_matrix.columns,
y=numeric_correlation_matrix.index,
colorbar=dict(title='coefficient'),
colorscale="Agsunset",
texttemplate='%{z:.3f}',
)
# Create figure
fig = go.Figure(data=[heatmap_trace])
return fig
with ui.nav_panel("Trip distance vs Eta"):
with ui.card(full_screen=True):
ui.card_header(
"Relationship between Trip Distance and ETA")
@render_plotly
def scatterplot():
return px.scatter(
train_data(),
x='trip_distance',
y='eta',
trendline='ols',
trendline_color_override=BRANDCOLORS["purple-light"],
labels={
'eta': 'Eta (seconds)', 'trip_distance': 'Trip Distance (meters)'},
)
with ui.nav_panel("Distribution"):
with ui.card(full_screen=True):
ui.card_header("Distribution per train column")
with ui.popover(title="Choose a train column"):
ICONS["ellipsis"]
ui.input_radio_buttons(
"train_col",
"Select:",
numericals,
selected="eta",
inline=True,
)
@render_plotly
def distribution():
column = input.train_col()
data = train_data()
fig1 = px.violin(data, x=column, box=True)
fig2 = px.histogram(data, x=column)
# Create a subplot layout with 1 row and 2 columns
fig = make_subplots(rows=1, cols=2)
# Add traces from fig1 to the subplot
for trace in fig1.data:
fig.add_trace(trace, row=1, col=1)
# Add traces from fig2 to the subplot
for trace in fig2.data:
fig.add_trace(trace, row=1, col=2)
# Update layout
fig.update_layout(title_text=f"Distribution in the {column} column",
showlegend=True,
legend_title_text=target
)
return fig
with ui.nav_panel("Weather features vs Eta"):
with ui.card(full_screen=True):
ui.card_header(
"Relationship between weather features and Median Eta in seconds")
with ui.popover(title="Choose a feature column"):
ICONS["ellipsis"]
ui.input_radio_buttons(
"weather_col",
"Select:",
[col for col in w_columns if col != "date"],
selected="dewpoint_2m_temperature",
inline=True,
)
@render_plotly
def weather_eta():
column = input.weather_col()
fig = px.scatter(
x=daily_weather_eta_df()[column],
y=daily_weather_eta_df()[target],
)
# Update layout
fig.update_layout(
title_text=f"Distribution in the {column} column",
showlegend=False
)
fig.update_xaxes(title_text=column) # Set x-axis title
fig.update_yaxes(title_text=target) # Set y-axis title
return fig
value = "More Visualizations..."
with ui.accordion_panel(title=ui.strong(value), value=value):
with ui.navset_card_pill(id="more_visualizations"):
with ui.nav_panel("Weather vs Eta"):
with ui.card(full_screen=True):
ui.card_header(
"Weather vs Eta Features summary")
@render_plotly
def eta_weather_summary():
daily_weather_eta_correlation_matrix = daily_weather_eta_df().corr().sort_values(by='eta')
# Create heatmap trace
heatmap_trace = go.Heatmap(
z=daily_weather_eta_correlation_matrix[[
'eta']].values,
x=daily_weather_eta_correlation_matrix[[
'eta']].columns,
y=daily_weather_eta_correlation_matrix[[
'eta']].index,
colorbar=dict(title='Coefficient'),
colorscale="Agsunset",
texttemplate='%{z:.3f}',
)
# Create figure
fig = go.Figure(data=[heatmap_trace])
return fig
with ui.nav_panel("Top locations"):
with ui.card(full_screen=True):
ui.card_header(
"Top 10 Most Common Origin and Destination Locations")
with ui.popover(title="Origin or Destination?"):
ICONS["ellipsis"]
ui.input_radio_buttons(
"location_type",
"Select:",
["origin", "destination"],
selected="origin",
inline=True,
)
@render_plotly
def top_locations():
location_type = input.location_type()
top_10_origin, top_10_dest = top_bottom_location()[
0]
data = top_10_origin if location_type == "origin" else top_10_dest
# Prepare data for origin locations
data.sort_values(by='count', inplace=True)
data['location'] = data.sort_values(by='count').apply(
lambda row: f"({row[f'{location_type}_lat']}, {row[f'{location_type}_lon']})", axis=1)
fig = go.Figure()
fig.add_trace(
go.Bar(
x=data['count'],
y=data['location'],
orientation='h',
marker=dict(
color=BRANDCOLORS['purple-light'] if location_type == "origin" else BRANDCOLORS['red']),
name=f'{location_type.title()} Locations'
)
)
# Update layout
fig.update_layout(
xaxis_title=f'{location_type.title()} Locations',
yaxis_title='Number of Rides',
showlegend=False
)
return fig
with ui.nav_panel("Trips by hour"):
with ui.card(full_screen=True):
ui.card_header(
"No of trips by Hour of the day")
with ui.popover(title="Average or Median?"):
ICONS["ellipsis"]
ui.input_radio_buttons(
"trip_agg",
"Select:",
["average", "median"],
selected="median",
inline=True,
)
@render_plotly
def trips_by_hour():
trip_agg = input.trip_agg()
# Create a DataFrame with only the Timestamp column
time_df = train_data()[['timestamp']]
# Extract the hour from the timestamp and add it as a new column
time_df = time_df.assign(hour=time_df['timestamp'].dt.hour)
# Count the number of trips for each hour of the day
tps = time_df['hour'].value_counts().sort_index().reset_index().rename(
columns={'hour': 'Hour', 'count': f'{trip_agg.title()} number of Trips'})
# Calculate the average number of trips per hour (Note: This line might not be necessary as 'trips_per_hour' already represents counts per hour)
if trip_agg == "median":
agg_trips_per_hour = tps.groupby(
'Hour')[f'{trip_agg.title()} number of Trips'].median().reset_index()
else:
agg_trips_per_hour = tps.groupby(
'Hour')[f'{trip_agg.title()} number of Trips'].mean().reset_index()
# Plot count ETA by hour
fig = px.line(
agg_trips_per_hour, x='Hour', y=f'{trip_agg.title()} number of Trips')
return fig
with ui.nav_panel("Mapping dataset locations"):
with ui.card(full_screen=True):
ui.card_header(
"Map of locations in the train dataset")
@render_plotly
def location_map():
country, geojson, data = get_country_geojson()
data['country'] = country
fig = px.scatter_geo(
data,
locations='country',
hover_name='country',
geojson=geojson,
fitbounds='geojson',
)
# Add longitude and latitude points
fig.add_scattergeo(
lon=data['longitude'],
lat=data['latitude'],
mode='markers',
marker=dict(
color=BRANDCOLORS["red"],
),
name='Locations in dataset'
)
# Add annotation to the map
fig.add_annotation(
text=f"{country}",
showarrow=False,
font=dict(size=18),
align="center"
)
fig.update_layout(
title=f'Dataset locations in {country}',
geo_scope='africa'
)
return fig
value = "Model Explainer"
with ui.accordion_panel(title=ui.strong(value), value=value):
with ui.navset_card_pill(id="model_explainer"):
with ui.nav_panel("Model Explainer..."):
with ui.card(full_screen=True):
ui.card_header("Coming Soon...")
ui.h3("Models")
@render.ui
def all_models():
return ui.tags.ul(
[ui.tags.li(item) for item in ALL_MODELS]
)
# ui.include_css("styles.css")
# --------------------------------------------------------
# Reactive calculations and effects
# --------------------------------------------------------
@reactive.calc
def train_data():
trip_distances = input.trip_distance()
idx1 = train_df.trip_distance.between(
trip_distances[0], trip_distances[1])
eta = input.eta()
idx2 = train_df.eta.between(eta[0], eta[1])
return train_df[idx1 & idx2]
@reactive.calc
def daily_weather_eta_df():
# Select relevant columns from the training DataFrame
time_eta_df = train_data()[['timestamp', 'eta']]
# Extract the date from the timestamp
time_eta_df = time_eta_df.assign(
date=pd.to_datetime(time_eta_df['timestamp'].dt.date))
# Prepare daily aggregated ETA data
daily_eta_df = (
time_eta_df
# Remove the 'timestamp' column as it's no longer needed
.drop(columns=['timestamp'])
# Set 'date' as the index for resampling
.set_index('date')
# Resample the data on a daily frequency
.resample('D')
.median() # Compute the median ETA for each day
.reset_index() # Reset the index to include 'date' as a column
)
# Merge the daily ETA data with the weather data
return (
pd.merge(daily_eta_df, weather_df, left_on='date', right_on='date')
.drop(columns=['date'])
)
@reactive.calc
def top_bottom_location():
# Group by origin locations and count occurrences
origin_counts = train_data().groupby(['origin_lat', 'origin_lon'])[
'origin_lon'].count().reset_index(name='count')
# Sort by count in descending order
top_origin = origin_counts.nlargest(10, columns=['count'])
bottom_origin = origin_counts.nsmallest(10, columns=['count'])
# Group by destination locations and count occurrences
destination_counts = train_data().groupby(['destination_lat', 'destination_lon'])[
'destination_lon'].count().reset_index(name='count')
# Sort by count in descending order
top_dest = destination_counts.nlargest(10, columns=['count'])
bottom_dest = destination_counts.nsmallest(10, columns=['count'])
return [(top_origin, top_dest), (bottom_origin, bottom_dest)]
@reactive.effect
@reactive.event(input.reset)
def _():
ui.update_slider("trip_distance", value=trip_distance_rng)
ui.update_slider("eta", value=eta_rng)
|