File size: 4,840 Bytes
569299e
 
 
 
 
 
 
 
 
ec3a146
 
f6f3371
ec3a146
 
 
 
 
569299e
f6f3371
 
ec3a146
 
 
569299e
 
ec3a146
 
 
 
 
 
 
 
 
 
 
 
 
569299e
 
 
 
 
 
ec3a146
569299e
ec3a146
 
569299e
ec3a146
 
569299e
 
 
 
 
 
ec3a146
 
 
569299e
 
 
ec3a146
569299e
ec3a146
569299e
 
 
 
 
 
ec3a146
569299e
 
ec3a146
 
569299e
 
 
 
 
 
 
ec3a146
 
569299e
 
 
 
 
ec3a146
f6f3371
569299e
ec3a146
569299e
 
 
 
 
 
ec3a146
569299e
 
f6f3371
569299e
 
f6f3371
ec3a146
569299e
 
 
 
f6f3371
 
ec3a146
f6f3371
ec3a146
569299e
 
 
 
ec3a146
 
569299e
 
 
 
 
 
 
f6f3371
 
ec3a146
569299e
f6f3371
 
ec3a146
 
569299e
 
 
 
 
 
ec3a146
569299e
f6f3371
ec3a146
569299e
 
 
 
 
 
 
ec3a146
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
from ddpg import Agent
import gymnasium as gym
import numpy as np
import matplotlib.pyplot as plt
import torch
from captum.attr import (IntegratedGradients)


class TrainingLoop:
    def __init__(self, env_spec, output_path='./output/', seed=0, **kwargs):
        assert env_spec in gym.envs.registry.keys()

        defaults = {
            "continuous": True,
            "gravity": -10.0,
            "render_mode": None
        }

        defaults.update(**kwargs)

        self.env = gym.make(
            env_spec,
            **defaults
        )

        torch.manual_seed(seed)

        self.agent = None
        self.output_path = output_path

    # TODO: spec-to-hyperparameters look-up
    def create_agent(self, alpha=0.000025, beta=0.00025, input_dims=[8], tau=0.001, batch_size=64, layer1_size=400, layer2_size=300, n_actions=4):
        self.agent = Agent(alpha=alpha, beta=beta, input_dims=input_dims, tau=tau, env=self.env, batch_size=batch_size, layer1_size=layer1_size, layer2_size=layer2_size, n_actions=n_actions)

    def train(self):
        assert self.agent is not None
        
        self.agent.load_models()

        score_history = []

        for i in range(1000):
            done = False
            score = 0
            obs, _ = self.env.reset()
            while not done:
                act = self.agent.choose_action(obs)
                new_state, reward, terminated, truncated, info = self.env.step(act)
                done = terminated or truncated
                self.agent.remember(obs, act, reward, new_state, int(done))
                self.agent.learn()
                score += reward
                obs = new_state

            score_history.append(score)
            print("episode", i, "score %.2f" % score, "100 game average %.2f" % np.mean(score_history[-100:]))
            if i % 25 == 0:
                self.agent.save_models()

        self.env.close()


    def load_trained(self):
        assert self.agent is not None

        self.agent.load_models()

        score_history = []

        for i in range(50):
            done = False
            score = 0
            obs, _ = self.env.reset()
            
            while not done:
                act = self.agent.choose_action(obs)
                new_state, reward, terminated, truncated, info = self.env.step(act)
                done = terminated or truncated
                score += reward
                obs = new_state

            score_history.append(score)
            print("episode", i, "score %.2f" % score, "100 game average %.2f" % np.mean(score_history[-100:]))

        self.env.close()

    # Model Explainability

    from captum.attr import (IntegratedGradients)

    def _collect_running_baseline_average(self, num_iterations: int) -> torch.Tensor:
        assert self.agent is not None
        print("--------- Collecting running baseline average ----------")

        self.agent.load_models()

        sum_obs = torch.zeros(8)

        for i in range(num_iterations):
            done = False
            score = 0
            obs, _ = self.env.reset()
            
            sum_obs += obs
            # print(f"Baseline on interation #{i}: {obs}")

            while not done:
                act = self.agent.choose_action(obs, baseline=None)
                new_state, reward, terminated, truncated, info = self.env.step(act)
                done = terminated or truncated
                score += reward
                obs = new_state

        print(f"Baseline collected: {sum_obs / num_iterations}")

        self.env.close()
        

        return sum_obs / num_iterations


    def explain_trained(self, option: str, num_iterations :int = 10) -> None:
        assert self.agent is not None
        
        baseline_options = {
            "1": torch.zeros(8),
            "2": self._collect_running_baseline_average(num_iterations), 
        }

        baseline = baseline_options[option]

        print("\n\n\n\n--------- Performing Attributions -----------")

        self.agent.load_models()

        
        print(self.agent.actor)
        ig = IntegratedGradients(self.agent.actor)
        self.agent.ig = ig

        score_history = []

        for i in range(50):
            done = False
            score = 0
            obs, _ = self.env.reset()
            while not done:
                act = self.agent.choose_action(observation=obs, baseline=baseline)
                new_state, reward, terminated, truncated, info = self.env.step(act)
                done = terminated or truncated
                score += reward
                obs = new_state

            score_history.append(score)
            print("episode", i, "score %.2f" % score, "100 game average %.2f" % np.mean(score_history[-100:]))

        self.env.close()

        return self.agent.attributions