Spaces:
Runtime error
Runtime error
File size: 9,835 Bytes
9c8145f 1359055 9c8145f 1359055 9c8145f 1359055 9c8145f 1359055 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
---
title: BabelCode Eval
colorFrom: blue
colorTo: red
sdk: gradio
sdk_version: 3.19.1
app_file: app.py
pinned: false
tags:
- evaluate
- metric
description: >-
This metric implements the evaluation harness for datasets translated with the
BabelCode framework as described in the paper "Measuring The Impact Of
Programming Language Distribution" (https://arxiv.org/abs/2302.01973).
---
# Metric Card for bc_eval
## Metric Description
This metric implements the evaluation harness for datasets translated with the BabelCode framework as described in the paper "Measuring The Impact Of Programming Language Distribution" (https://arxiv.org/abs/2302.01973).
## How to Use
1. Generate predictions for BabelCode supported datasets
2. Aggregate the predictions by their question.
3. With the aggregated predictions for each question, add the `question_info` from the original BabelCode dataset.
4. Run the metric on the `predictions`, `languages`, and `question_infos`.
5. The result of the metric is a tuple where the first is a metric dict and the second value is the results for each prediction.
```python
import evaluate
from datasets import load_dataset
import os
os.environ["HF_ALLOW_CODE_EVAL"] = "1"
predictions = []
languages = []
question_infos = []
ds = load_dataset("gabeorlanski/bc-humaneval", split="test")
for row in ds:
languages.append(row['language'])
question_infos.append(row['question_info'])
# Replace this with however you generate and postprocess predictions.
predictions.append(model.generate(row['signature_with_docstring']))
metric = evaluate.load("bc_eval")
metrics, results = metric.compute(
predictions=predictions, languages=languages, question_dicts=question_infos, k=[1]
)
```
### Inputs
* `predictions`(`List[List[str]]`): The list of predictions for each question to execute.
* `languages`(`List[str]`): The language to use for each question.
* `question_dicts`(`List[Dict]`): The information for each question.
* `k`(`List[int]`): number of code candidates to consider in the evaluation (Default: [1, 10, 100])
* `num_workers`(`int`): number of workers used to evaluate the candidate programs (Default: 4).
* `language_timeout`(`Dict[str,int]`): Timeouts to use for each language. If it is not set, will default to the one in the question dict (Default: None).
### Output Values
The `bc_eval` metric outputs two things:
* `metrics`: a dictionary with the pass rates for each k value defined in the arguments and the mean percent of tests passed per question. The keys are formatted as `{LANGUAGE NAME}/{METRIC NAME}`
* `results`: a list of dictionaries with the results from each individual prediction.
#### Values from Popular Papers
[PaLM-2](https://arxiv.org/pdf/2305.10403.pdf) Performance on BC-HumanEval (`pass@1` with greedy decoding):
| Language | PaLM 2-S* | PaLM 540B | PaLM-Coder-540B |
|------------|-----------|-----------|-----------------|
| C# | 24.22 | 20.5 | **26.09** |
| C++ | **34.16** | 21.74 | 24.22 |
| Go | 19.25 | 13.66 | **21.12** |
| Haskell | **8.7** | 1.86 | 1.86 |
| Java | **31.06** | 20.5 | 25.47 |
| JavaScript | **32.3** | 23.6 | 29.81 |
| Julia | **16.77** | 2.48 | 4.35 |
| Lua | **26.09** | 19.25 | 24.84 |
| PHP | **26.09** | 18.63 | 25.47 |
| Python | **34.16** | 17.39 | 26.71 |
| Rust | **28.57** | 16.15 | 22.98 |
| TypeScript | **32.3** | 17.39 | 30.43 |
### Examples
Full example with inputs that fail tests, time out, have an error, and pass.
#### Passing Example
```python
import evaluate
from datasets import load_dataset
import os
os.environ["HF_ALLOW_CODE_EVAL"] = "1"
ds = load_dataset("gabeorlanski/bc-humaneval", split="test")
example = ds[0]
metric = evaluate.load("bc_eval")
languages = ["Python"]
question_infos = [example["question_info"]]
predictions = [["""def has_close_elements(numbers: List[float], threshold: float) -> bool:
for idx, elem in enumerate(numbers):
for idx2, elem2 in enumerate(numbers):
if idx != idx2:
distance = abs(elem - elem2)
if distance < threshold:
return True
return False"""
]]
metrics, results = metric.compute(
predictions=predictions, languages=languages, question_dicts=question_infos, k=[1]
)
```
`metrics` is:
```
{"Python/pass@1": 1.0, "Python/mean_pct_pass": 1.0}
```
`results` is:
```
[{"qid": 0, "idx": "0", "file_path": ".../tmpqt_p3dwn/0", "results": [{"return_code": 0, "runtime": 0.076369, "stdout": "TEST-0...PASSED\r\nTEST-1...PASSED\r\nTEST-2...PASSED\r\nTEST-3...PASSED\r\nTEST-4...PASSED\r\nTEST-5...PASSED\r\nTEST-6...PASSED\r\n", "stderr": "", "timed_out": false}], "failed": false, "timed_out": false, "test_cases": {"0": "PASSED", "1": "PASSED", "2": "PASSED", "3": "PASSED", "4": "PASSED", "5": "PASSED", "6": "PASSED"}, "outcome": "PASSED"}]
```
#### Fails Test Example
```python
import evaluate
from datasets import load_dataset
import os
os.environ["HF_ALLOW_CODE_EVAL"] = "1"
ds = load_dataset(
"gabeorlanski/bc-humaneval", "Python", split="test"
)
example = ds[0]
metric = evaluate.load("bc_eval")
languages = ["Python"]
question_infos = [example["question_info"]]
predictions = [["""def has_close_elements(numbers: List[float], threshold: float) -> bool:
for idx, elem in enumerate(numbers):
for idx2, elem2 in enumerate(numbers):
if idx != idx2:
distance = elem - elem2
if distance < threshold:
return True
return False"""
]]
metrics, results = metric.compute(
predictions=predictions, languages=languages, question_dicts=question_infos, k=[1]
)
```
`metrics` is:
```
{"Python/pass@1": 0.0, "Python/mean_pct_pass": 0.5714285714285714}
```
`results` is:
```
[{"qid": 0, "idx": "0", "file_path": "/tmp7u587vk5/0", "results": [{"return_code": 0, "runtime": 0.08255, "stdout": "TEST-0...PASSED\r\nTEST-1...FAILED\r\nTEST-2...PASSED\r\nTEST-3...FAILED\r\nTEST-4...PASSED\r\nTEST-5...PASSED\r\nTEST-6...FAILED\r\n", "stderr": "", "timed_out": false}], "failed": false, "timed_out": false, "test_cases": {"0": "PASSED", "1": "FAILED", "2": "PASSED", "3": "FAILED", "4": "PASSED", "5": "PASSED", "6": "FAILED"}, "outcome": "FAILED"}]
```
Note that the individual test results are located in results.
#### Timeout Example
```python
import evaluate
from datasets import load_dataset
import os
os.environ["HF_ALLOW_CODE_EVAL"] = "1"
ds = load_dataset(
"gabeorlanski/bc-humaneval", "Python", split="test"
)
example = ds[0]
metric = evaluate.load("bc_eval")
languages = ["Python"]
question_infos = [example["question_info"]]
predictions = [["""import time
def has_close_elements(numbers: List[float], threshold: float) -> bool:
time.sleep(100)
"""
]]
metrics, results = metric.compute(
predictions=predictions, languages=languages, question_dicts=question_infos, k=[1]
)
```
`metrics` is:
```
{"Python/pass@1": 0.0, "Python/mean_pct_pass": 0.0}
```
`results` is:
```
[{"qid": 0, "idx": "0", "file_path": "/tmp_rz6bhb9/0", "results": [{"return_code": -1, "runtime": 10, "stdout": null, "stderr": null, "timed_out": true}], "failed": false, "timed_out": true, "test_cases": {"0": "MISSING", "1": "MISSING", "2": "MISSING", "3": "MISSING", "4": "MISSING", "5": "MISSING", "6": "MISSING"}, "outcome": "TIMED_OUT"}]
```
#### Error Example
```python
import evaluate
from datasets import load_dataset
import os
os.environ["HF_ALLOW_CODE_EVAL"] = "1"
ds = load_dataset(
"gabeorlanski/bc-humaneval", "Python", split="test"
)
example = ds[0]
metric = evaluate.load("bc_eval")
languages = ["Python"]
question_infos = [example["question_info"]]
predictions = [["""import time
def has_close_elements(numbers: List[float], threshold: float) -> bool:
raise ValueError()
""",
"""def add(a, b):
return a+b"""
]]
metrics, results = metric.compute(
predictions=predictions, languages=languages, question_dicts=question_infos, k=[1]
)
```
`metrics` is:
```
{"Python/pass@1": 0.0, "Python/mean_pct_pass": 0.0}
```
`results` is:
```
[{"qid": 0, "idx": "0", "file_path": "/tmpjdn51aaa/0", "results": [{"return_code": 0, "runtime": 0.102855, "stdout": "TEST-0...ValueError\r\nTEST-1...ValueError\r\nTEST-2...ValueError\r\nTEST-3...ValueError\r\nTEST-4...ValueError\r\nTEST-5...ValueError\r\nTEST-6...ValueError\r\n", "stderr": "", "timed_out": false}], "failed": false, "timed_out": false, "test_cases": {"0": "ValueError", "1": "ValueError", "2": "ValueError", "3": "ValueError", "4": "ValueError", "5": "ValueError", "6": "ValueError"}, "outcome": "HAD_ERROR"},
{"qid": 0, "idx": "1", "file_path": "/tmpjdn51aaa/1", "results": [{"return_code": 0, "runtime": 0.094347, "stdout": "TEST-0...NameError\r\nTEST-1...NameError\r\nTEST-2...NameError\r\nTEST-3...NameError\r\nTEST-4...NameError\r\nTEST-5...NameError\r\nTEST-6...NameError\r\n", "stderr": "", "timed_out": false}], "failed": false, "timed_out": false, "test_cases": {"0": "NameError", "1": "NameError", "2": "NameError", "3": "NameError", "4": "NameError", "5": "NameError", "6": "NameError"}, "outcome": "HAD_ERROR"}]
```
## Limitations and Bias
This metric requires that the dataset be BabelCode compatible.
## Citation
```
@article{orlanski2023measuring,
title={Measuring The Impact Of Programming Language Distribution},
author={Orlanski, Gabriel and Xiao, Kefan and Garcia, Xavier and Hui, Jeffrey and Howland, Joshua and Malmaud, Jonathan and Austin, Jacob and Singh, Rishah and Catasta, Michele},
journal={arXiv preprint arXiv:2302.01973},
year={2023}
}
```
|