File size: 3,836 Bytes
1359055
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import datetime
import gc
import multiprocessing as mp
import pathlib
import subprocess
from dataclasses import dataclass
from typing import Dict, List

from tqdm import tqdm

@dataclass
class CommandResult:
    return_code: int
    runtime: float
    stdout: str
    stderr: str
    timed_out: bool 

def safe_execute(
    command_to_run: List[str],
    working_dir: pathlib.Path,
    timeout: int = 10,
) -> CommandResult:
    """Executes a list of commands safely.

    Args:
      command_to_run: The command to run.
      working_dir: The working directory to run them in.
      timeout Timeout.

    Returns:
      The result of executing the command.
    """
    timed_out = False
    return_code = -1
    runtime = timeout
    stderr = None
    stdout = None
    start_time = datetime.datetime.now()
    execution_process = subprocess.Popen(
        command_to_run,
        cwd=str(working_dir),
        stdout=subprocess.PIPE,
        stderr=subprocess.PIPE,
    )
    try:
        outputs = execution_process.communicate(timeout=timeout)
    
        stdout, stderr = outputs
        stdout = stdout.decode('utf-8')
        stderr = stderr.decode('utf-8')
        runtime = (datetime.datetime.now() - start_time).total_seconds()
        return_code = execution_process.returncode
    except subprocess.TimeoutExpired:
        timed_out = True
        runtime = timeout
    finally:
        execution_process.kill()
    
    return CommandResult(
        return_code=return_code,
        runtime=runtime,
        stderr=stderr,
        stdout=stdout,
        timed_out=timed_out,
    )


def execute_code(sample: Dict):
    """Execute a file of code.

    Args:
        sample: The sample to run.

    Returns:
        The execution result.
    """
    file_path = sample["cwd"]
    working_dir_for_execution = (
        file_path.parent if file_path.is_file() else file_path
    )
    working_dir_for_execution = working_dir_for_execution.resolve().absolute()
    timed_out = False
    failed = False
    results = []
    for command in sample['commands']:
        res = safe_execute(command['command'], working_dir=working_dir_for_execution, timeout=command['timeout'])
        results.append(res)
        if res.timed_out:
            timed_out = True 
            break
        if res.return_code != 0:
            failed = True
            break    
    return {
        "qid":sample['qid'],
        "idx": sample["idx"],
        "file_path": str(file_path.absolute().resolve()),
        "results": results,
        "failed":failed,
        "timed_out": timed_out,
    }




def execute_predictions(
    predictions: List[Dict],
    num_workers: int = 1,
    max_task_per_child: int = 1,
    garbage_collection_freq: int = 500,
):
    """Execute a list of predictions in a specific language.

    Args:
        predictions: List of predictions.
        num_workers: The number of workers to use.
        max_task_per_child: The maximum tasks ran per child before it is killed.
        garbage_collection_freq: How often to run garbage collection.

    Returns:
        The the array of raw execution results and the total runtime.
    """

    # Make the arguments to submit to the ThreadPoolExecutor. Do it here so we
    # can have a progress bar as well.
    num_to_complete = len(predictions)
    num_completed = 0
    results = []
    with mp.Pool(num_workers, maxtasksperchild=max_task_per_child) as pool:
        for result in tqdm(
            pool.imap_unordered(execute_code, predictions),
            total=num_to_complete,
            desc="Executing",
        ):
            num_completed += 1

            results.append(result)

            if num_completed % garbage_collection_freq == 0:
                gc.collect()
        # Cleanup pool
        pool.close()
        pool.terminate()
    return results