Spaces:
Runtime error
Runtime error
import dataclasses | |
import itertools | |
import os | |
import re | |
import tempfile | |
from collections import defaultdict | |
from pathlib import Path | |
import datasets | |
import evaluate | |
import numpy as np | |
from tqdm import tqdm | |
from .execution import execute_predictions | |
STDOUT_PARSE_REGEX = re.compile(r"^TEST-(.+)\.\.\.(.+)$", flags=re.MULTILINE) | |
_CITATION = """\ | |
@article{orlanski2023measuring, | |
title={Measuring The Impact Of Programming Language Distribution}, | |
author={Orlanski, Gabriel and Xiao, Kefan and Garcia, Xavier and Hui, Jeffrey and Howland, Joshua and Malmaud, Jonathan and Austin, Jacob and Singh, Rishah and Catasta, Michele}, | |
journal={arXiv preprint arXiv:2302.01973}, | |
year={2023} | |
} | |
""" | |
_DESCRIPTION = """\ | |
This metric implements the evaluation harness for datasets translated with the BabelCode framework as described in the paper "Measuring The Impact Of Programming Language Distribution" (https://arxiv.org/abs/2302.01973). | |
""" | |
_KWARGS_DESCRIPTION = """ | |
Calculates how many predictions per question pass a set of tests for the given problem. | |
Args: | |
predictions: The list of predictions for each question to execute. | |
languages: The language to use for each question. | |
question_dicts: The information for each question. | |
k: number of code candidates to consider in the evaluation (Default: [1, 10, 100]) | |
num_workers: number of workers used to evaluate the candidate programs (Default: 4). | |
language_timeout: Timeouts to use for each language. If it is not set, will default to the one in the question dict (Default: None). | |
Returns: | |
pass_at_k: dict with pass rates for each k | |
results: dict with granular results of each unittest | |
Examples: | |
>>> bc_eval = evaluate.load("bc_eval") | |
>>> predictions = [["def add(a,b):\n\treturn a+b", "def add(a,b):\n\treturn a-b"]] | |
>>> languages = ["Python"] | |
>>> question_dicts = [{"test_code": "...", "entry_fn_name": "add","entry_cls_name":"Solution", "test_case_ids":["0","1"],"test_list":"..."}] | |
>>> pass_at_k, results = code_eval.compute(predictions=predictions,languages=languages, question_dicts=question_dicts, k=[1, 2]) | |
>>> print(pass_at_k) | |
{'pass@1': 0.5, 'pass@2': 1.0} | |
""" | |
_WARNING = """ | |
################################################################################ | |
!!!WARNING!!! | |
################################################################################ | |
The "bc_eval" metric executes untrusted model-generated code in Python. | |
Although it is highly unlikely that model-generated code will do something | |
overtly malicious in response to this test suite, model-generated code may act | |
destructively due to a lack of model capability or alignment. | |
Users are strongly encouraged to sandbox this evaluation suite so that it | |
does not perform destructive actions on their host or network. For more | |
information on how OpenAI sandboxes its code, see the paper "Evaluating Large | |
Language Models Trained on Code" (https://arxiv.org/abs/2107.03374). | |
Once you have read this disclaimer and taken appropriate precautions, | |
set the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this | |
with: | |
import os | |
os.environ["HF_ALLOW_CODE_EVAL"] = "1" | |
################################################################################\ | |
""" | |
_QUESTION_INFO_KEYS = { | |
"entry_fn_name", | |
"entry_cls_name", | |
"test_code", | |
"test_list", | |
"test_case_ids", | |
} | |
def make_file_and_command( | |
qid, idx, pred, question, working_dir, timeout_override=None | |
): | |
file_name = f"pred.{question['extension']}" | |
pred_dir = working_dir.joinpath(idx) | |
pred_dir.mkdir(parents=True) | |
pred_file = pred_dir.joinpath(file_name) | |
with pred_file.open("w") as f: | |
code = question["test_code"] | |
code = question["test_code"].replace("PLACEHOLDER_CODE_BODY", pred) | |
code = code.replace("PLACEHOLDER_FN_NAME", question["entry_fn_name"]) | |
code = code.replace("PLACEHOLDER_CLS_NAME", question["entry_cls_name"]) | |
f.write(code) | |
commands = [] | |
for cmd, t in zip(question["commands"], question["timeouts"]): | |
commands.append( | |
{ | |
"timeout": t if timeout_override is None else timeout_override, | |
"command": [ | |
c if c != "__FILENAME__" else file_name for c in cmd | |
], | |
} | |
) | |
return {"qid": qid, "idx": idx, "commands": commands, "cwd": pred_dir} | |
def _write_preds( | |
preds, | |
languages, | |
language_timeout, | |
question_dicts, | |
tmp_dir, | |
): | |
commands = [] | |
question_id_to_dict = {} | |
for pred_list, l, q_dict in tqdm( | |
zip(preds, languages, question_dicts), desc="Setup", total=len(preds) | |
): | |
qid = len(question_id_to_dict) | |
q_dict['language'] = l | |
question_id_to_dict[qid] = q_dict | |
for p in pred_list: | |
commands.append( | |
make_file_and_command( | |
qid=qid, | |
idx=str(len(commands)), | |
pred=p, | |
question=q_dict, | |
timeout_override=language_timeout.get(l), | |
working_dir=tmp_dir, | |
) | |
) | |
return question_id_to_dict, commands | |
class BabelCodeEval(evaluate.Metric): | |
def _info(self): | |
list_keys = ["timeouts", "commands", "test_case_ids"] | |
question_info_type = { | |
k: datasets.Value(dtype="string") | |
for k in _QUESTION_INFO_KEYS | |
if k not in list_keys | |
} | |
question_info_type["test_case_ids"] = datasets.Value("string") | |
question_info_type["commands"] = datasets.Sequence( | |
datasets.Value("string") | |
) | |
question_info_type["timeouts"] = datasets.Sequence( | |
datasets.Value("int32") | |
) | |
return evaluate.MetricInfo( | |
# This is the description that will appear on the metrics page. | |
description=_DESCRIPTION, | |
citation=_CITATION, | |
inputs_description=_KWARGS_DESCRIPTION, | |
# This defines the format of each prediction and reference | |
features=datasets.Features( | |
{ | |
"predictions": datasets.Sequence(datasets.Value("string")), | |
"languages": datasets.Value("string"), | |
} | |
), | |
homepage="https://github.com/google-research/babelcode", | |
codebase_urls=["https://github.com/google-research/babelcode"], | |
reference_urls=["https://github.com/google-research/babelcode"], | |
) | |
def _compute( | |
self, | |
predictions, | |
languages, | |
question_dicts, | |
k=[1, 10, 100], | |
num_workers=4, | |
language_timeout=None, | |
): | |
"""Returns the scores""" | |
if os.getenv("HF_ALLOW_CODE_EVAL", 0) != "1": | |
raise ValueError(_WARNING) | |
language_timeout = language_timeout or {} | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
working_dir = Path(tmp_dir) | |
question_map, pred_commands = _write_preds( | |
preds=predictions, | |
languages=languages, | |
language_timeout=language_timeout, | |
question_dicts=question_dicts, | |
tmp_dir=working_dir, | |
) | |
results = execute_predictions( | |
pred_commands, | |
num_workers=num_workers, | |
max_task_per_child=5, | |
garbage_collection_freq=500, | |
) | |
all_results, q_passes, q_pct = _eval_predictions( | |
results, question_map | |
) | |
assert len(q_passes) == len(q_pct) | |
metrics = {} | |
for lang in q_passes: | |
metrics.update(_calculate_metrics(lang, q_passes[lang], q_pct[lang],k_vals=k)) | |
return metrics, all_results | |
def _eval_single_pred(result, test_ids, num_expected_commands): | |
test_case_results = {k: "MISSING" for k in test_ids} | |
if len(result["results"]) != num_expected_commands: | |
return "HAD_ERROR", 0, test_case_results | |
last_result = result["results"][-1] | |
if last_result.timed_out: | |
return "TIMED_OUT", 0, test_case_results | |
elif last_result.return_code != 0: | |
return "HAD_ERROR", 0, test_case_results | |
elif not last_result.stdout: | |
return "HAD_ERROR", 0, test_case_results | |
for match in STDOUT_PARSE_REGEX.findall(last_result.stdout): | |
idx, test_result = match | |
if idx in test_ids: | |
if test_case_results[idx] != "MISSING": | |
return "UNKNOWN_ERROR", 0, test_case_results | |
test_case_results[idx] = test_result.strip() | |
did_test_fail = False | |
had_error = False | |
num_passed = 0 | |
for r in test_case_results.values(): | |
if r == "PASSED": | |
num_passed += 1 | |
elif r == "FAILED": | |
did_test_fail = True | |
else: | |
had_error = True | |
if had_error: | |
return "HAD_ERROR", num_passed, test_case_results | |
if did_test_fail: | |
return "FAILED", num_passed, test_case_results | |
return "PASSED", num_passed, test_case_results | |
def _eval_predictions(pred_results, question_map): | |
out = [] | |
question_results = defaultdict(lambda: defaultdict(list)) | |
question_pct_pass = defaultdict(lambda: defaultdict(list)) | |
for p in pred_results: | |
question = question_map[p["qid"]] | |
test_cases = question["test_case_ids"] | |
num_expected_commands = len(question["commands"]) | |
outcome, num_passed, test_case_results = _eval_single_pred( | |
p, test_ids=test_cases, num_expected_commands=num_expected_commands | |
) | |
p["results"] = [dataclasses.asdict(r) for r in p["results"]] | |
p["test_cases"] = test_case_results | |
p["outcome"] = outcome | |
lang = question['language'] | |
question_results[lang][p["qid"]].append( | |
num_passed == len(test_case_results) | |
) | |
question_pct_pass[lang][p["qid"]].append( | |
num_passed / len(test_case_results) | |
) | |
out.append(p) | |
return out, question_results, question_pct_pass | |
def _calculate_metrics(lang,q_passed, q_pcts, k_vals): | |
assert len(q_passed) == len(q_pcts) | |
num_samples = np.zeros(len(q_passed)) | |
num_correct = np.zeros(len(q_passed)) | |
pcts_passed = np.zeros(len(q_passed)) | |
for i, (k,v) in enumerate(q_passed.items()): | |
num_samples[i] = len(v) | |
num_correct[i] = sum(v) | |
pcts_passed[i] = np.mean(q_pcts[k]) | |
out = {f'{lang}/pass@{k}': estimate_pass_at_k(num_samples, num_correct, k).mean() for k in k_vals} | |
out[f'{lang}/mean_pct_pass'] = np.mean(pcts_passed) | |
return out | |
def estimate_pass_at_k(num_samples, num_correct, k): | |
"""Estimates pass@k of each problem and returns them in an array.""" | |
def estimator(n: int, c: int, k: int) -> float: | |
"""Calculates 1 - comb(n - c, k) / comb(n, k).""" | |
if n - c < k: | |
return 1.0 | |
return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1, n + 1)) | |
if isinstance(num_samples, int): | |
num_samples_it = itertools.repeat(num_samples, len(num_correct)) | |
else: | |
assert len(num_samples) == len(num_correct) | |
num_samples_it = iter(num_samples) | |
return np.array( | |
[ | |
estimator(int(n), int(c), k) | |
for n, c in zip(num_samples_it, num_correct) | |
] | |
) | |