import datetime import gc import multiprocessing as mp import pathlib import subprocess from dataclasses import dataclass from typing import Dict, List from tqdm import tqdm @dataclass class CommandResult: return_code: int runtime: float stdout: str stderr: str timed_out: bool def safe_execute( command_to_run: List[str], working_dir: pathlib.Path, timeout: int = 10, ) -> CommandResult: """Executes a list of commands safely. Args: command_to_run: The command to run. working_dir: The working directory to run them in. timeout Timeout. Returns: The result of executing the command. """ timed_out = False return_code = -1 runtime = timeout stderr = None stdout = None start_time = datetime.datetime.now() execution_process = subprocess.Popen( command_to_run, cwd=str(working_dir), stdout=subprocess.PIPE, stderr=subprocess.PIPE, ) try: outputs = execution_process.communicate(timeout=timeout) stdout, stderr = outputs stdout = stdout.decode('utf-8') stderr = stderr.decode('utf-8') runtime = (datetime.datetime.now() - start_time).total_seconds() return_code = execution_process.returncode except subprocess.TimeoutExpired: timed_out = True runtime = timeout except Exception as e: stderr = str(e) stdout = "" return_code = -1 finally: execution_process.kill() return CommandResult( return_code=return_code, runtime=runtime, stderr=stderr, stdout=stdout, timed_out=timed_out, ) def execute_code(sample: Dict): """Execute a file of code. Args: sample: The sample to run. Returns: The execution result. """ file_path = sample["cwd"] working_dir_for_execution = ( file_path.parent if file_path.is_file() else file_path ) working_dir_for_execution = working_dir_for_execution.resolve().absolute() timed_out = False failed = False results = [] for command in sample['commands']: res = safe_execute(command['command'], working_dir=working_dir_for_execution, timeout=command['timeout']) results.append(res) if res.timed_out: timed_out = True break if res.return_code != 0: failed = True break return { "qid":sample['qid'], "idx": sample["idx"], "file_path": str(file_path.absolute().resolve()), "results": results, "failed":failed, "timed_out": timed_out, } def execute_predictions( predictions: List[Dict], num_workers: int = 1, max_task_per_child: int = 1, garbage_collection_freq: int = 500, ): """Execute a list of predictions in a specific language. Args: predictions: List of predictions. num_workers: The number of workers to use. max_task_per_child: The maximum tasks ran per child before it is killed. garbage_collection_freq: How often to run garbage collection. Returns: The the array of raw execution results and the total runtime. """ # Make the arguments to submit to the ThreadPoolExecutor. Do it here so we # can have a progress bar as well. num_to_complete = len(predictions) num_completed = 0 results = [] with mp.Pool(num_workers, maxtasksperchild=max_task_per_child) as pool: for result in tqdm( pool.imap_unordered(execute_code, predictions), total=num_to_complete, desc="Executing", ): num_completed += 1 results.append(result) if num_completed % garbage_collection_freq == 0: gc.collect() # Cleanup pool pool.close() pool.terminate() return results