# -*- coding: utf-8 -*- """ Created on Sat Dec 3 18:31:26 2022 @author: gabri """ import numpy as np import tensorflow as tf import gradio as gr from huggingface_hub import from_pretrained_keras import cv2 import requests from PIL import Image import matplotlib.cm as cm # import matplotlib.pyplot as plt models_links = { 'convnext':'https://huggingface.co/gabri14el/grapevine_classification/resolve/main/experimentos/fine-tuning/huge_classifier_20varieties.h5'} model_weights = { } model_last_convolutional_layer = {'convnext': 'convnext_base_stage_3_block_2_depthwise_conv'} classes = ['Alveralhao', 'Arinto do Douro', 'Cercial', 'Codega', 'Codega do Larinho', 'Donzelinho', 'Folgasao', 'Malvasia Fina', 'Malvasia Preta', 'Malvasia Rei', 'Moscatel Galego', 'Mourisco Tinto', 'Rabigato', 'Samarrinho', 'Sousao', 'Tinta Amarela', 'Tinta Barroca', 'Tinta Roriz', 'Tinto Cao', 'Touriga Nacional'] # functions for inference target_size_dimension = 224 n_classes = len(classes) def define_model(model): weights = get_weights(model) if model == 'convnext': preprocessing_function=tf.keras.applications.convnext.preprocess_input model = tf.keras.applications.ConvNeXtBase( include_top=False, input_shape= (target_size_dimension, target_size_dimension, 3), weights='imagenet', pooling='avg' ) x = tf.keras.layers.Dense(512, activation='relu')(model.output) x = tf.keras.layers.Dropout(0.20)(x) x = tf.keras.layers.Dense(512, activation='relu')(x) x = tf.keras.layers.Dropout(0.20)(x) output = tf.keras.layers.Dense(n_classes, activation='softmax')(x) nmodel = tf.keras.models.Model(model.input, output) nmodel.load_weights(weights) return preprocessing_function, nmodel def get_weights(model): if not model in model_weights: r = requests.get(models_links[model], allow_redirects=True) open(model+'.h5', 'wb').write(r.content) model_weights[model] = model+'.h5' return model_weights[model] def get_img_array(img_path, size, expand=True): # `img` is a PIL image of size 299x299 img = tf.keras.preprocessing.image.load_img(img_path, target_size=size) # `array` is a float32 Numpy array of shape (299, 299, 3) array = tf.keras.preprocessing.image.img_to_array(img) # We add a dimension to transform our array into a "batch" # of size (1, 299, 299, 3) if expand: array = np.expand_dims(array, axis=0) return array def make_gradcam_heatmap(img_array, grad_model, last_conv_layer_name, pred_index=None, tresh=0.1): # First, we create a model that maps the input image to the activations # of the last conv layer as well as the output predictions #grad_model = tf.keras.models.Model( #[model.inputs], [model.get_layer(last_conv_layer_name).output, model.output] #) # Then, we compute the gradient of the top predicted class for our input image # with respect to the activations of the last conv layer with tf.GradientTape() as tape: last_conv_layer_output, preds = grad_model(img_array) if pred_index is None: pred_index = tf.argmax(preds[0]) class_channel = preds[:, pred_index] # This is the gradient of the output neuron (top predicted or chosen) # with regard to the output feature map of the last conv layer grads = tape.gradient(class_channel, last_conv_layer_output) # This is a vector where each entry is the mean intensity of the gradient # over a specific feature map channel pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2)) # We multiply each channel in the feature map array # by "how important this channel is" with regard to the top predicted class # then sum all the channels to obtain the heatmap class activation last_conv_layer_output = last_conv_layer_output[0] heatmap = last_conv_layer_output @ pooled_grads[..., tf.newaxis] heatmap = tf.squeeze(heatmap) # For visualization purpose, we will also normalize the heatmap between 0 & 1 heatmap = tf.maximum(heatmap, 0) / tf.math.reduce_max(heatmap) heatmap = heatmap.numpy() return heatmap def save_and_display_gradcam(img, heatmap, cam_path="cam.jpg", alpha=0.4): # Rescale heatmap to a range 0-255 heatmap = np.uint8(255 * heatmap) im = Image.fromarray(heatmap) im = im.resize((img.shape[1], img.shape[0])) im = np.asarray(im) im = np.where(im > 0, 1, im) # Use jet colormap to colorize heatmap jet = cm.get_cmap("jet") # Use RGB values of the colormap jet_colors = jet(np.arange(256))[:, :3] jet_heatmap = jet_colors[heatmap] # Create an image with RGB colorized heatmap jet_heatmap = tf.keras.preprocessing.image.array_to_img(jet_heatmap) jet_heatmap = jet_heatmap.resize((img.shape[1], img.shape[0])) jet_heatmap = tf.keras.preprocessing.image.img_to_array(jet_heatmap) # Superimpose the heatmap on original image superimposed_img = jet_heatmap * alpha + img superimposed_img = tf.keras.preprocessing.image.array_to_img(superimposed_img) # Save the superimposed image #superimposed_img.save(cam_path) # Display Grad CAM #display(Image(cam_path)) return superimposed_img, im def infer(model_name, input_image): print('#$$$$$$$$$$$$$$$$$$$$$$$$$ IN INFER $$$$$$$$$$$$$$$$$$$$$$$') print(model_name, type(input_image)) preprocess, model = define_model(model_name) #img = get_img_array(input_image, (target_size_dimension, target_size_dimension)) img_processed = preprocess(np.expand_dims(input_image, axis=0)) predictions = model.predict(img_processed) predictions = np.squeeze(predictions) result = {} for i in range(len(classes)): result[classes[i]] = float(predictions[i]) #predictions = np.argmax(predictions) # , axis=2 #predicted_label = classes[predictions.item()] print(input_image.shape) model.layers[-1].activation = None grad_model = tf.keras.models.Model([model.inputs], [model.get_layer(model_last_convolutional_layer[model_name]).output, model.output]) print(result) heatmap = make_gradcam_heatmap(img_processed, grad_model,model_last_convolutional_layer[model_name]) heat, mask = save_and_display_gradcam(input_image, heatmap) return result, heat gr.outputs.Image() # get the inputs css = css = ".output-image, .input-image, .image-preview {height: 300px !important}" inputs = [gr.Radio(["convnext"], label='Choose a model'), gr.inputs.Image(shape=(target_size_dimension, target_size_dimension), label='Select an image')] # the app outputs two segmented images output = [gr.outputs.Label(label="Result"), gr.outputs.Image(type="numpy", label="Heatmap (Grad-CAM)")] # it's good practice to pass examples, description and a title to guide users examples = [["./content/examples/Frog.jpg"], ["./content/examples/Truck.jpg"]] title = "Grapevine image classification" description = "Upload an image to classify it. The allowed classes are - Alveralhao, Arinto do Douro, Cercial, Codega, Codega do Larinho, Donzelinho, Folgasao, Malvasia Fina, Malvasia Preta, Malvasia Rei, Moscatel Galego, Mourisco Tinto, Rabigato, Samarrinho, Sousao, Tinta Amarela, Tinta Barroca, Tinta Roriz, Tinto Cao, and Touriga Nacional

Space author: Gabriel Carneiro
gabri14el@gmail.com

" gr_interface = gr.Interface(infer, inputs, output, allow_flagging=False, analytics_enabled=False, css=css, title=title, description=description).launch(enable_queue=True, debug=False) #gr_interface.launch()