gabri14el commited on
Commit
12ac236
1 Parent(s): bf2fd2a

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +209 -0
app.py ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """
3
+ Created on Sat Dec 3 18:31:26 2022
4
+
5
+ @author: gabri
6
+ """
7
+
8
+ import numpy as np
9
+ import tensorflow as tf
10
+ import gradio as gr
11
+ from huggingface_hub import from_pretrained_keras
12
+ import cv2
13
+ import requests
14
+ from PIL import Image
15
+ import matplotlib.cm as cm
16
+ # import matplotlib.pyplot as plt
17
+
18
+
19
+
20
+ models_links = {
21
+ 'xception':r'https://huggingface.co/gabri14el/grapevine_classification/resolve/main/experimentos/classificacao/Experimento%205/pesos.h5',
22
+ 'resnet':r'https://huggingface.co/gabri14el/grapevine_classification/resolve/main/experimentos/classificacao/Experimento%209/pesos.h5',
23
+ 'efficientnet':'https://huggingface.co/gabri14el/grapevine_classification/resolve/main/experimentos/classificacao/Experimento%2010/pesos.h5'}
24
+
25
+ model_weights = {
26
+ }
27
+
28
+ model_last_convolutional_layer = {
29
+ 'xception':'block14_sepconv2_act',
30
+ 'resnet':'conv5_block3_3_conv',
31
+ 'efficientnet':'top_conv'}
32
+
33
+ classes = ['C贸dega', 'Moscatel Galego', 'Rabigato', 'Tinta Roriz', 'Tinto Cao', 'Touriga Nacional']
34
+ # functions for inference
35
+ target_size_dimension = 300
36
+
37
+ def define_model(model):
38
+ weights = get_weights(model)
39
+ if model == 'efficientnet':
40
+ preprocessing_function=tf.keras.applications.efficientnet.preprocess_input
41
+ model = tf.keras.applications.EfficientNetB3(
42
+ include_top=False,
43
+ input_shape= (target_size_dimension, target_size_dimension, 3),
44
+ weights='imagenet',
45
+ pooling='avg'
46
+ )
47
+ elif model == 'resnet':
48
+ preprocessing_function=tf.keras.applications.resnet_v2.preprocess_input
49
+ model = tf.keras.applications.resnet_v2.ResNet101V2(
50
+ include_top=False,
51
+ input_shape= (target_size_dimension, target_size_dimension, 3),
52
+ weights='imagenet',
53
+ pooling='avg'
54
+ )
55
+ else:
56
+ preprocessing_function=tf.keras.applications.xception.preprocess_input
57
+ model = tf.keras.applications.Xception(
58
+ include_top=False,
59
+ input_shape= (target_size_dimension, target_size_dimension, 3),
60
+ weights='imagenet',
61
+ pooling='avg'
62
+ )
63
+
64
+ x = tf.keras.layers.Dense(512, activation='relu')(model.output)
65
+ x = tf.keras.layers.Dropout(0.25)(x)
66
+ x = tf.keras.layers.Dense(512, activation='relu')(x)
67
+ x = tf.keras.layers.Dropout(0.25)(x)
68
+ output = tf.keras.layers.Dense(6, activation='softmax')(x)
69
+ nmodel = tf.keras.models.Model(model.input, output)
70
+ nmodel.load_weights(weights)
71
+ return preprocessing_function, nmodel
72
+
73
+ def get_weights(model):
74
+ if not model in model_weights:
75
+ r = requests.get(models_links[model], allow_redirects=True)
76
+ open(model+'.h5', 'wb').write(r.content)
77
+ model_weights[model] = model+'.h5'
78
+ return model_weights[model]
79
+
80
+
81
+
82
+
83
+ def get_img_array(img_path, size, expand=True):
84
+ # `img` is a PIL image of size 299x299
85
+ img = tf.keras.preprocessing.image.load_img(img_path, target_size=size)
86
+ # `array` is a float32 Numpy array of shape (299, 299, 3)
87
+ array = tf.keras.preprocessing.image.img_to_array(img)
88
+ # We add a dimension to transform our array into a "batch"
89
+ # of size (1, 299, 299, 3)
90
+
91
+ if expand:
92
+ array = np.expand_dims(array, axis=0)
93
+ return array
94
+
95
+
96
+ def make_gradcam_heatmap(img_array, grad_model, last_conv_layer_name, pred_index=None, tresh=0.1):
97
+ # First, we create a model that maps the input image to the activations
98
+ # of the last conv layer as well as the output predictions
99
+ #grad_model = tf.keras.models.Model(
100
+ #[model.inputs], [model.get_layer(last_conv_layer_name).output, model.output]
101
+ #)
102
+
103
+ # Then, we compute the gradient of the top predicted class for our input image
104
+ # with respect to the activations of the last conv layer
105
+
106
+ with tf.GradientTape() as tape:
107
+ last_conv_layer_output, preds = grad_model(img_array)
108
+ if pred_index is None:
109
+ pred_index = tf.argmax(preds[0])
110
+ class_channel = preds[:, pred_index]
111
+
112
+ # This is the gradient of the output neuron (top predicted or chosen)
113
+ # with regard to the output feature map of the last conv layer
114
+ grads = tape.gradient(class_channel, last_conv_layer_output)
115
+
116
+ # This is a vector where each entry is the mean intensity of the gradient
117
+ # over a specific feature map channel
118
+ pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2))
119
+
120
+ # We multiply each channel in the feature map array
121
+ # by "how important this channel is" with regard to the top predicted class
122
+ # then sum all the channels to obtain the heatmap class activation
123
+ last_conv_layer_output = last_conv_layer_output[0]
124
+ heatmap = last_conv_layer_output @ pooled_grads[..., tf.newaxis]
125
+ heatmap = tf.squeeze(heatmap)
126
+
127
+ # For visualization purpose, we will also normalize the heatmap between 0 & 1
128
+ heatmap = tf.maximum(heatmap, 0) / tf.math.reduce_max(heatmap)
129
+ heatmap = heatmap.numpy()
130
+ return heatmap
131
+
132
+ def save_and_display_gradcam(img, heatmap, cam_path="cam.jpg", alpha=0.4):
133
+
134
+ # Rescale heatmap to a range 0-255
135
+ heatmap = np.uint8(255 * heatmap)
136
+ im = Image.fromarray(heatmap)
137
+ im = im.resize((img.shape[1], img.shape[0]))
138
+
139
+ im = np.asarray(im)
140
+ im = np.where(im > 0, 1, im)
141
+
142
+ # Use jet colormap to colorize heatmap
143
+ jet = cm.get_cmap("jet")
144
+
145
+ # Use RGB values of the colormap
146
+ jet_colors = jet(np.arange(256))[:, :3]
147
+ jet_heatmap = jet_colors[heatmap]
148
+
149
+
150
+
151
+ # Create an image with RGB colorized heatmap
152
+ jet_heatmap = tf.keras.preprocessing.image.array_to_img(jet_heatmap)
153
+ jet_heatmap = jet_heatmap.resize((img.shape[1], img.shape[0]))
154
+ jet_heatmap = tf.keras.preprocessing.image.img_to_array(jet_heatmap)
155
+
156
+ # Superimpose the heatmap on original image
157
+ superimposed_img = jet_heatmap * alpha + img
158
+ superimposed_img = tf.keras.preprocessing.image.array_to_img(superimposed_img)
159
+
160
+ # Save the superimposed image
161
+ #superimposed_img.save(cam_path)
162
+
163
+ # Display Grad CAM
164
+ #display(Image(cam_path))
165
+ return superimposed_img, im
166
+
167
+
168
+ def infer(model_name, input_image):
169
+ print('#$$$$$$$$$$$$$$$$$$$$$$$$$ IN INFER $$$$$$$$$$$$$$$$$$$$$$$')
170
+ print(model_name, type(input_image))
171
+ preprocess, model = define_model(model_name)
172
+
173
+ #img = get_img_array(input_image, (target_size_dimension, target_size_dimension))
174
+ img_processed = preprocess(np.expand_dims(input_image, axis=0))
175
+
176
+ predictions = model.predict(img_processed)
177
+ predictions = np.squeeze(predictions)
178
+
179
+
180
+ result = {}
181
+
182
+
183
+ for i in range(len(classes)):
184
+ result[classes[i]] = float(predictions[i])
185
+ #predictions = np.argmax(predictions) # , axis=2
186
+ #predicted_label = classes[predictions.item()]
187
+ print(input_image.shape)
188
+ model.layers[-1].activation = None
189
+ grad_model = tf.keras.models.Model([model.inputs], [model.get_layer(model_last_convolutional_layer[model_name]).output, model.output])
190
+
191
+ print(result)
192
+ heatmap = make_gradcam_heatmap(img_processed, grad_model,model_last_convolutional_layer[model_name])
193
+ heat, mask = save_and_display_gradcam(input_image, heatmap)
194
+
195
+ return result, heat
196
+
197
+ gr.outputs.Image()
198
+ # get the inputs
199
+ css = css = ".output-image, .input-image, .image-preview {height: 300px !important}"
200
+ inputs = [gr.Radio(["resnet", "efficientnet", "xception"], label='Choose a model'), gr.inputs.Image(shape=(target_size_dimension, target_size_dimension), label='Select an image')]
201
+ # the app outputs two segmented images
202
+ output = [gr.outputs.Label(label="Result"), gr.outputs.Image(type="numpy", label="Heatmap (Grad-CAM)")]
203
+ # it's good practice to pass examples, description and a title to guide users
204
+ examples = [["./content/examples/Frog.jpg"], ["./content/examples/Truck.jpg"]]
205
+ title = "Grapevine image classification"
206
+ description = "Upload an image to classify it. The allowed classes are - C贸dega, Moscatel Galego, Rabigato, Tinta Roriz, Tinto Cao, Touriga Nacional <p><b>Space author: Gabriel Carneiro</b> <br><b> [email protected] </b> </p>"
207
+
208
+ gr_interface = gr.Interface(infer, inputs, output, allow_flagging=False, analytics_enabled=False, css=css, title=title, description=description).launch(enable_queue=True, debug=False)
209
+ #gr_interface.launch()