File size: 6,519 Bytes
e3a3f96
f40eab1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3a3f96
f40eab1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3a3f96
 
 
 
 
f40eab1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3a3f96
 
 
 
 
 
 
 
f40eab1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import os
import tempfile

from colpali_engine.models.paligemma_colbert_architecture import ColPali
from colpali_engine.utils.colpali_processing_utils import process_images
from colpali_engine.utils.colpali_processing_utils import process_queries
import google.generativeai as genai
import numpy as np
import pdf2image
from PIL import Image
import requests
import streamlit as st
import torch
from torch.utils.data import DataLoader
from transformers import AutoProcessor


os.environ["TOKENIZERS_PARALLELISM"] = "false"
SS = st.session_state


def initialize_session_state():
    keys = [
        "colpali_model",
        "page_images",
        "retrieved_page_images",
        "response",
    ]
    for key in keys:
        if key not in SS:
            SS[key] = None


def get_device():
    if torch.cuda.is_available():
        device = torch.device("cuda")
    elif torch.backends.mps.is_available():
        device = torch.device("mps")
    else:
        device = torch.device("cpu")
    return device


def get_dtype(device: torch.device):
    if device == torch.device("cuda"):
        dtype = torch.bfloat16
    elif device == torch.device("mps"):
        dtype = torch.float32
    else:
        dtype = torch.float32
    return dtype


def load_colpali_model():
    paligemma_model_name = "google/paligemma-3b-mix-448"
    colpali_model_name = "vidore/colpali"
    device = get_device()
    dtype = get_dtype(device)

    model = ColPali.from_pretrained(
        paligemma_model_name,
        torch_dtype=dtype,
        token=st.secrets["hf_access_token"],
    ).eval()
    model.load_adapter(colpali_model_name)
    model.to(device)
    processor = AutoProcessor.from_pretrained(colpali_model_name)
    return model, processor


def embed_page_images(model, processor, page_images, batch_size=2):
    dataloader = DataLoader(
        page_images,
        batch_size=batch_size,
        shuffle=False,
        collate_fn=lambda x: process_images(processor, x),
    )
    page_embeddings = []
    for batch in dataloader:
        with torch.no_grad():
            batch = {k: v.to(model.device) for k, v in batch.items()}
            embeddings = model(**batch)
            page_embeddings.extend(list(torch.unbind(embeddings.to("cpu"))))
    return np.array(page_embeddings)


def embed_query_texts(model, processor, query_texts, batch_size=1):
    # 448 is from the paligemma resolution we loaded
    dummy_image = Image.new("RGB", (448, 448), (255, 255, 255))
    dataloader = DataLoader(
        query_texts,
        batch_size=batch_size,
        shuffle=False,
        collate_fn=lambda x: process_queries(processor, x, dummy_image),
    )
    query_embeddings = []
    for batch in dataloader:
        with torch.no_grad():
            batch = {k: v.to(model.device) for k, v in batch.items()}
            embeddings = model(**batch)
            query_embeddings.extend(list(torch.unbind(embeddings.to("cpu"))))
    return np.array(query_embeddings)[0]



def get_pdf_page_images_from_bytes(
    pdf_bytes: bytes,
    use_tmp_dir=False,
):
    if use_tmp_dir:
        with tempfile.TemporaryDirectory() as tmp_path:
            page_images = pdf2image.convert_from_bytes(pdf_bytes, output_folder=tmp_path)
    else:
        page_images = pdf2image.convert_from_bytes(pdf_bytes)
    return page_images


def get_pdf_bytes_from_url(url: str) -> bytes | None:
    response = requests.get(url)
    if response.status_code == 200:
        return response.content
    else:
        print(f"failed to fetch {url}")
        print(response)
        return None


def display_pages(page_images, key):
    n_cols = st.slider("ncol", min_value=1, max_value=8, value=4, step=1, key=key)
    cols = st.columns(n_cols)
    for ii_page, page_image in enumerate(page_images):
        ii_col = ii_page % n_cols
        with cols[ii_col]:
            st.image(page_image)


initialize_session_state()


if SS["colpali_model"] is None:
    SS["colpali_model"], SS["processor"] = load_colpali_model()


with st.sidebar:
    url = st.text_input("arxiv url", "https://arxiv.org/pdf/2112.01488.pdf")

    if st.button("load paper"):
        pdf_bytes = get_pdf_bytes_from_url(url)
        SS["page_images"] = get_pdf_page_images_from_bytes(pdf_bytes)


    if st.button("embed pages"):
        SS["page_embeddings"] = embed_page_images(
            SS["colpali_model"],
            SS["processor"],
            SS["page_images"],
        )


with st.container(border=True):
    query = st.text_area("query")
    top_k = st.slider("num pages to retrieve", min_value=1, max_value=8, value=3, step=1)
    if st.button("answer query"):
        SS["query_embeddings"] = embed_query_texts(
            SS["colpali_model"],
            SS["processor"],
            [query],
        )

        page_query_scores = []
        for ipage in range(len(SS["page_embeddings"])):
            # for every query token find the max_sim with every page patch
            patch_query_scores = np.dot(
                SS['page_embeddings'][ipage],
                SS["query_embeddings"].T,
            )
            max_sim_score = patch_query_scores.max(axis=0).sum()
            page_query_scores.append(max_sim_score)

        page_query_scores = np.array(page_query_scores)
        i_ranked_pages = np.argsort(-page_query_scores)

        page_images = []
        for ii in range(top_k):
            page_images.append(SS["page_images"][i_ranked_pages[ii]])
        SS["retrieved_page_images"] = page_images


        prompt = [
            query +
            " Think through your answer step by step. "
            "Support your answer with descriptions of the images. "
            "Do not infer information that is not in the images.",
        ] + page_images

        genai.configure(api_key=st.secrets["google_genai_api_key"])
#        genai_model_name = "gemini-1.5-flash"
        genai_model_name = "gemini-1.5-pro"
        gen_model = genai.GenerativeModel(
            model_name=genai_model_name,
            generation_config=genai.GenerationConfig(
                temperature=0.1,
            ),
        )
        response = gen_model.generate_content(prompt)
        text = response.candidates[0].content.parts[0].text
        SS["response"] = text


if SS["response"] is not None:
    st.write(SS["response"])
    st.header("Retrieved Pages")
    display_pages(SS["retrieved_page_images"], "retrieved_pages")



if SS["page_images"] is not None:
    st.header("All PDF Pages")
    display_pages(SS["page_images"], "all_pages")