Spaces:
Sleeping
Sleeping
File size: 6,519 Bytes
e3a3f96 f40eab1 e3a3f96 f40eab1 e3a3f96 f40eab1 e3a3f96 f40eab1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
import os
import tempfile
from colpali_engine.models.paligemma_colbert_architecture import ColPali
from colpali_engine.utils.colpali_processing_utils import process_images
from colpali_engine.utils.colpali_processing_utils import process_queries
import google.generativeai as genai
import numpy as np
import pdf2image
from PIL import Image
import requests
import streamlit as st
import torch
from torch.utils.data import DataLoader
from transformers import AutoProcessor
os.environ["TOKENIZERS_PARALLELISM"] = "false"
SS = st.session_state
def initialize_session_state():
keys = [
"colpali_model",
"page_images",
"retrieved_page_images",
"response",
]
for key in keys:
if key not in SS:
SS[key] = None
def get_device():
if torch.cuda.is_available():
device = torch.device("cuda")
elif torch.backends.mps.is_available():
device = torch.device("mps")
else:
device = torch.device("cpu")
return device
def get_dtype(device: torch.device):
if device == torch.device("cuda"):
dtype = torch.bfloat16
elif device == torch.device("mps"):
dtype = torch.float32
else:
dtype = torch.float32
return dtype
def load_colpali_model():
paligemma_model_name = "google/paligemma-3b-mix-448"
colpali_model_name = "vidore/colpali"
device = get_device()
dtype = get_dtype(device)
model = ColPali.from_pretrained(
paligemma_model_name,
torch_dtype=dtype,
token=st.secrets["hf_access_token"],
).eval()
model.load_adapter(colpali_model_name)
model.to(device)
processor = AutoProcessor.from_pretrained(colpali_model_name)
return model, processor
def embed_page_images(model, processor, page_images, batch_size=2):
dataloader = DataLoader(
page_images,
batch_size=batch_size,
shuffle=False,
collate_fn=lambda x: process_images(processor, x),
)
page_embeddings = []
for batch in dataloader:
with torch.no_grad():
batch = {k: v.to(model.device) for k, v in batch.items()}
embeddings = model(**batch)
page_embeddings.extend(list(torch.unbind(embeddings.to("cpu"))))
return np.array(page_embeddings)
def embed_query_texts(model, processor, query_texts, batch_size=1):
# 448 is from the paligemma resolution we loaded
dummy_image = Image.new("RGB", (448, 448), (255, 255, 255))
dataloader = DataLoader(
query_texts,
batch_size=batch_size,
shuffle=False,
collate_fn=lambda x: process_queries(processor, x, dummy_image),
)
query_embeddings = []
for batch in dataloader:
with torch.no_grad():
batch = {k: v.to(model.device) for k, v in batch.items()}
embeddings = model(**batch)
query_embeddings.extend(list(torch.unbind(embeddings.to("cpu"))))
return np.array(query_embeddings)[0]
def get_pdf_page_images_from_bytes(
pdf_bytes: bytes,
use_tmp_dir=False,
):
if use_tmp_dir:
with tempfile.TemporaryDirectory() as tmp_path:
page_images = pdf2image.convert_from_bytes(pdf_bytes, output_folder=tmp_path)
else:
page_images = pdf2image.convert_from_bytes(pdf_bytes)
return page_images
def get_pdf_bytes_from_url(url: str) -> bytes | None:
response = requests.get(url)
if response.status_code == 200:
return response.content
else:
print(f"failed to fetch {url}")
print(response)
return None
def display_pages(page_images, key):
n_cols = st.slider("ncol", min_value=1, max_value=8, value=4, step=1, key=key)
cols = st.columns(n_cols)
for ii_page, page_image in enumerate(page_images):
ii_col = ii_page % n_cols
with cols[ii_col]:
st.image(page_image)
initialize_session_state()
if SS["colpali_model"] is None:
SS["colpali_model"], SS["processor"] = load_colpali_model()
with st.sidebar:
url = st.text_input("arxiv url", "https://arxiv.org/pdf/2112.01488.pdf")
if st.button("load paper"):
pdf_bytes = get_pdf_bytes_from_url(url)
SS["page_images"] = get_pdf_page_images_from_bytes(pdf_bytes)
if st.button("embed pages"):
SS["page_embeddings"] = embed_page_images(
SS["colpali_model"],
SS["processor"],
SS["page_images"],
)
with st.container(border=True):
query = st.text_area("query")
top_k = st.slider("num pages to retrieve", min_value=1, max_value=8, value=3, step=1)
if st.button("answer query"):
SS["query_embeddings"] = embed_query_texts(
SS["colpali_model"],
SS["processor"],
[query],
)
page_query_scores = []
for ipage in range(len(SS["page_embeddings"])):
# for every query token find the max_sim with every page patch
patch_query_scores = np.dot(
SS['page_embeddings'][ipage],
SS["query_embeddings"].T,
)
max_sim_score = patch_query_scores.max(axis=0).sum()
page_query_scores.append(max_sim_score)
page_query_scores = np.array(page_query_scores)
i_ranked_pages = np.argsort(-page_query_scores)
page_images = []
for ii in range(top_k):
page_images.append(SS["page_images"][i_ranked_pages[ii]])
SS["retrieved_page_images"] = page_images
prompt = [
query +
" Think through your answer step by step. "
"Support your answer with descriptions of the images. "
"Do not infer information that is not in the images.",
] + page_images
genai.configure(api_key=st.secrets["google_genai_api_key"])
# genai_model_name = "gemini-1.5-flash"
genai_model_name = "gemini-1.5-pro"
gen_model = genai.GenerativeModel(
model_name=genai_model_name,
generation_config=genai.GenerationConfig(
temperature=0.1,
),
)
response = gen_model.generate_content(prompt)
text = response.candidates[0].content.parts[0].text
SS["response"] = text
if SS["response"] is not None:
st.write(SS["response"])
st.header("Retrieved Pages")
display_pages(SS["retrieved_page_images"], "retrieved_pages")
if SS["page_images"] is not None:
st.header("All PDF Pages")
display_pages(SS["page_images"], "all_pages")
|