Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -52,31 +52,31 @@ def load_index(model):
|
|
52 |
|
53 |
|
54 |
dict_models = {
|
55 |
-
'
|
56 |
-
'
|
57 |
-
'
|
58 |
# 'en-ar': model_ar,
|
59 |
}
|
60 |
|
61 |
dict_models_tr = {
|
62 |
-
'
|
63 |
-
'
|
64 |
-
'
|
65 |
# 'en-ar': model_tr_ar,
|
66 |
}
|
67 |
|
68 |
dict_tokenizer_tr = {
|
69 |
-
'
|
70 |
-
'
|
71 |
-
'
|
72 |
# 'en-ar': tokenizer_ar,
|
73 |
}
|
74 |
# dict_reference_faiss = {'en-es':[]}
|
75 |
dict_reference_faiss = {
|
76 |
-
'
|
77 |
-
'en
|
78 |
-
'
|
79 |
-
'
|
80 |
}
|
81 |
|
82 |
# print("dict", dict_reference_faiss['en-es']['input']['tokens'][1])
|
@@ -103,11 +103,31 @@ contrastive_examples = [
|
|
103 |
]
|
104 |
|
105 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
#Load challenge set examples
|
108 |
-
df_challenge_set = pd.read_csv("challenge_sets.csv")
|
109 |
-
arr_challenge_set = df_challenge_set.values
|
110 |
-
arr_challenge_set = [[x[2], x[3], x[4], x[5]] for x in arr_challenge_set]
|
|
|
111 |
|
112 |
|
113 |
|
@@ -828,7 +848,7 @@ with gr.Blocks(js="plotsjs.js") as demo:
|
|
828 |
"""
|
829 |
1. Select the language pair for the translation
|
830 |
""")
|
831 |
-
radio_c = gr.Radio(choices=['fr-en', 'fr-es', 'fr-de'], value="fr-en", label= ['French to English', "French to Spanish", "French to German"], container=False)
|
832 |
gr.Markdown(
|
833 |
"""
|
834 |
2. Source text to translate
|
@@ -839,12 +859,13 @@ with gr.Blocks(js="plotsjs.js") as demo:
|
|
839 |
"""
|
840 |
### select an example from the challenge set listed bellow
|
841 |
""")
|
842 |
-
challenge_ex = gr.Textbox(label="Challenge", interactive=False)
|
843 |
-
category_minor = gr.Textbox(label="category_minor", interactive=False)
|
844 |
-
category_major = gr.Textbox(label="category_major", interactive=False)
|
845 |
|
846 |
with gr.Accordion("Examples:"):
|
847 |
-
gr.Examples(arr_challenge_set,[in_text
|
|
|
848 |
|
849 |
btn = gr.Button("Translate")
|
850 |
|
|
|
52 |
|
53 |
|
54 |
dict_models = {
|
55 |
+
'fr-es': model_es,
|
56 |
+
'fr-en': model_en,
|
57 |
+
'fr-de': model_de,
|
58 |
# 'en-ar': model_ar,
|
59 |
}
|
60 |
|
61 |
dict_models_tr = {
|
62 |
+
'fr-es': model_tr_es,
|
63 |
+
'fr-en': model_tr_en,
|
64 |
+
'fr-de': model_tr_de,
|
65 |
# 'en-ar': model_tr_ar,
|
66 |
}
|
67 |
|
68 |
dict_tokenizer_tr = {
|
69 |
+
'fr-es': tokenizer_es,
|
70 |
+
'fr-en': tokenizer_en,
|
71 |
+
'fr-de': tokenizer_de,
|
72 |
# 'en-ar': tokenizer_ar,
|
73 |
}
|
74 |
# dict_reference_faiss = {'en-es':[]}
|
75 |
dict_reference_faiss = {
|
76 |
+
'fr-es': [], #load_index('en-es'),
|
77 |
+
'fr-en': [], #load_index('en-ar'),
|
78 |
+
'fr-de': [], #load_index('en-fr'),
|
79 |
+
'fr-zh': [], #load_index('en-zh'),
|
80 |
}
|
81 |
|
82 |
# print("dict", dict_reference_faiss['en-es']['input']['tokens'][1])
|
|
|
103 |
]
|
104 |
|
105 |
|
106 |
+
french_examples = [
|
107 |
+
["","","Les appels répétés de sa mère [auraient] dû nous alerter.", "", ""],
|
108 |
+
["","","Elle a promis à son médecin de demeurer [active] après s’être retirée.", "", ""],
|
109 |
+
["","","Nous [avons] lancé une insulte et nous [sommes] partis brusquement.", "",""],
|
110 |
+
["","","La vache et la poule [doivent] être [nourries].","",""],
|
111 |
+
["","","Le bruit soudain dans les chambres supérieures [aurait] dû nous alerter.","",""],
|
112 |
+
["","","le bailleur de fonds a terminé son travail.","",""],
|
113 |
+
["","","la bailleuse de fonds a terminé son travail.","",""],
|
114 |
+
["","","l'esthéticien a terminé son travail.","",""],
|
115 |
+
["","","l'esthéticienne a terminé son travail.","",""],
|
116 |
+
["","","l'esthéticienne a terminé son travail.","",""],
|
117 |
+
["","","chaque ingénieure a terminé son travail.","",""],
|
118 |
+
["","","chaque ingénieur a fini son travail.","",""],
|
119 |
+
|
120 |
+
|
121 |
+
|
122 |
+
|
123 |
+
]
|
124 |
+
|
125 |
|
126 |
#Load challenge set examples
|
127 |
+
# df_challenge_set = pd.read_csv("challenge_sets.csv")
|
128 |
+
# arr_challenge_set = df_challenge_set.values
|
129 |
+
# arr_challenge_set = [[x[2], x[3], x[4], x[5]] for x in arr_challenge_set]
|
130 |
+
arr_challenge_set = [[x[2]] for x in french_examples]
|
131 |
|
132 |
|
133 |
|
|
|
848 |
"""
|
849 |
1. Select the language pair for the translation
|
850 |
""")
|
851 |
+
radio_c = gr.Radio(choices=[['french to english','fr-en'], ['french to spanish','fr-es'], ['french to german', 'fr-de']], value="fr-en", label= ['French to English', "French to Spanish", "French to German"], container=False)
|
852 |
gr.Markdown(
|
853 |
"""
|
854 |
2. Source text to translate
|
|
|
859 |
"""
|
860 |
### select an example from the challenge set listed bellow
|
861 |
""")
|
862 |
+
# challenge_ex = gr.Textbox(label="Challenge", interactive=False)
|
863 |
+
# category_minor = gr.Textbox(label="category_minor", interactive=False)
|
864 |
+
# category_major = gr.Textbox(label="category_major", interactive=False)
|
865 |
|
866 |
with gr.Accordion("Examples:"):
|
867 |
+
gr.Examples(arr_challenge_set,[in_text], label="")
|
868 |
+
# gr.Examples(arr_challenge_set,[in_text, challenge_ex,category_minor,category_major], label="")
|
869 |
|
870 |
btn = gr.Button("Translate")
|
871 |
|