Spaces:
Sleeping
Sleeping
Gabriel C
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,83 +1,62 @@
|
|
1 |
import os
|
2 |
-
import time
|
3 |
|
4 |
import gradio as gr
|
5 |
import numpy as np
|
6 |
-
import soundfile as sf
|
7 |
-
|
8 |
from groq import Groq
|
9 |
-
from
|
|
|
|
|
10 |
|
11 |
groq_client = Groq(api_key=os.getenv('GROQ_API_KEY'))
|
12 |
-
openai_client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'))
|
13 |
|
14 |
-
def transcribe(
|
15 |
"""
|
16 |
-
|
17 |
"""
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
language="en",
|
22 |
-
model="whisper-1"
|
23 |
-
)
|
24 |
-
return transcription.text
|
25 |
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
"""
|
28 |
Autocomplete the text using Gemma.
|
29 |
"""
|
30 |
if text != "":
|
31 |
response = groq_client.chat.completions.create(
|
32 |
model='gemma-7b-it',
|
33 |
-
messages=[{"role": "system", "content": "You are a friendly assistant."},
|
34 |
{"role": "user", "content": text}]
|
35 |
)
|
36 |
|
37 |
return response.choices[0].message.content
|
38 |
|
39 |
-
def process_audio(input_audio):
|
40 |
"""
|
41 |
Process the audio input by transcribing and completing the sentences.
|
|
|
42 |
"""
|
43 |
-
# Now you can use the audio_file_path with soundfile.read()
|
44 |
-
audio_data, sample_rate = sf.read(input_audio)
|
45 |
-
|
46 |
-
# Ensure mono audio
|
47 |
-
if len(audio_data.shape) > 1:
|
48 |
-
audio_data = np.mean(audio_data, axis=1)
|
49 |
-
|
50 |
-
transcription_list = []
|
51 |
-
for start in range(0, len(audio_data), sample_rate):
|
52 |
-
end = start + sample_rate
|
53 |
-
segment = audio_data[start:end]
|
54 |
-
|
55 |
-
# Temporarily saving each segment to a file (Whisper requires a file input)
|
56 |
-
segment_filename = f"/tmp/audio_segment_{start}.wav"
|
57 |
-
sf.write(segment_filename, segment, sample_rate)
|
58 |
-
|
59 |
-
# Transcribe the audio segment
|
60 |
-
transcription = transcribe(segment_filename)
|
61 |
-
|
62 |
-
transcription_list.append(transcription)
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
|
|
68 |
|
69 |
-
return text
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
outputs=gr.Markdown(),
|
76 |
title="Dear Gemma",
|
77 |
-
description="Talk to the AI assistant.
|
78 |
live=True,
|
79 |
allow_flagging="never"
|
80 |
)
|
81 |
|
82 |
-
|
83 |
-
interface.launch()
|
|
|
1 |
import os
|
|
|
2 |
|
3 |
import gradio as gr
|
4 |
import numpy as np
|
|
|
|
|
5 |
from groq import Groq
|
6 |
+
from transformers import pipeline
|
7 |
+
|
8 |
+
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base.en")
|
9 |
|
10 |
groq_client = Groq(api_key=os.getenv('GROQ_API_KEY'))
|
|
|
11 |
|
12 |
+
def transcribe(stream, new_chunk):
|
13 |
"""
|
14 |
+
Transcribes using whisper
|
15 |
"""
|
16 |
+
sr, y = new_chunk
|
17 |
+
y = y.astype(np.float32)
|
18 |
+
y /= np.max(np.abs(y))
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
if stream is not None:
|
21 |
+
stream = np.concatenate([stream, y])
|
22 |
+
else:
|
23 |
+
stream = y
|
24 |
+
return stream, transcriber({"sampling_rate": sr, "raw": stream})["text"]
|
25 |
+
|
26 |
+
def autocomplete(text):
|
27 |
"""
|
28 |
Autocomplete the text using Gemma.
|
29 |
"""
|
30 |
if text != "":
|
31 |
response = groq_client.chat.completions.create(
|
32 |
model='gemma-7b-it',
|
33 |
+
messages=[{"role": "system", "content": "You are a friendly assistant named Gemma."},
|
34 |
{"role": "user", "content": text}]
|
35 |
)
|
36 |
|
37 |
return response.choices[0].message.content
|
38 |
|
39 |
+
def process_audio(input_audio, new_chunk):
|
40 |
"""
|
41 |
Process the audio input by transcribing and completing the sentences.
|
42 |
+
Accumulate results to return to Gradio interface.
|
43 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
+
stream, transcription = transcribe(input_audio, new_chunk)
|
46 |
+
text = autocomplete(transcription)
|
47 |
+
|
48 |
+
print (transcription, text)
|
49 |
+
return stream, text
|
50 |
|
|
|
51 |
|
52 |
+
demo = gr.Interface(
|
53 |
+
fn = process_audio,
|
54 |
+
inputs = ["state", gr.Audio(sources=["microphone"], streaming=True)],
|
55 |
+
outputs = ["state", gr.Markdown()],
|
|
|
56 |
title="Dear Gemma",
|
57 |
+
description="Talk to the AI assistant.",
|
58 |
live=True,
|
59 |
allow_flagging="never"
|
60 |
)
|
61 |
|
62 |
+
demo.launch()
|
|