Spaces:
Sleeping
Sleeping
Gabriel C
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import time
|
3 |
+
|
4 |
+
import gradio as gr
|
5 |
+
import numpy as np
|
6 |
+
import soundfile as sf
|
7 |
+
|
8 |
+
from groq import Groq
|
9 |
+
from openai import OpenAI
|
10 |
+
|
11 |
+
groq_client = Groq(api_key=os.getenv('GROQ_API_KEY'))
|
12 |
+
openai_client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'))
|
13 |
+
|
14 |
+
def transcribe(audio_path):
|
15 |
+
"""
|
16 |
+
Transcribe the audio segment using Whisper.
|
17 |
+
"""
|
18 |
+
with open(audio_path, 'rb') as audio_file:
|
19 |
+
transcription = openai_client.audio.transcriptions.create(
|
20 |
+
file=audio_file,
|
21 |
+
language="en",
|
22 |
+
model="whisper-1"
|
23 |
+
)
|
24 |
+
return transcription.text
|
25 |
+
|
26 |
+
def autocomplete(text):
|
27 |
+
"""
|
28 |
+
Autocomplete the text using Gemma.
|
29 |
+
"""
|
30 |
+
if text != "":
|
31 |
+
response = groq_client.chat.completions.create(
|
32 |
+
model='gemma-7b-it',
|
33 |
+
messages=[{"role": "system", "content": "You are a friendly assistant."},
|
34 |
+
{"role": "user", "content": text}]
|
35 |
+
)
|
36 |
+
|
37 |
+
return response.choices[0].message.content
|
38 |
+
|
39 |
+
def process_audio(input_audio):
|
40 |
+
"""
|
41 |
+
Process the audio input by transcribing and completing the sentences.
|
42 |
+
"""
|
43 |
+
# Now you can use the audio_file_path with soundfile.read()
|
44 |
+
audio_data, sample_rate = sf.read(input_audio)
|
45 |
+
|
46 |
+
# Ensure mono audio
|
47 |
+
if len(audio_data.shape) > 1:
|
48 |
+
audio_data = np.mean(audio_data, axis=1)
|
49 |
+
|
50 |
+
transcription_list = []
|
51 |
+
for start in range(0, len(audio_data), sample_rate):
|
52 |
+
end = start + sample_rate
|
53 |
+
segment = audio_data[start:end]
|
54 |
+
|
55 |
+
# Temporarily saving each segment to a file (Whisper requires a file input)
|
56 |
+
segment_filename = f"/tmp/audio_segment_{start}.wav"
|
57 |
+
sf.write(segment_filename, segment, sample_rate)
|
58 |
+
|
59 |
+
# Transcribe the audio segment
|
60 |
+
transcription = transcribe(segment_filename)
|
61 |
+
|
62 |
+
transcription_list.append(transcription)
|
63 |
+
|
64 |
+
# # Send the transcription for completion
|
65 |
+
completion_result = autocomplete(transcription)
|
66 |
+
|
67 |
+
text = f"Qn: {transcription} \n \n Ans: {completion_result}"
|
68 |
+
|
69 |
+
return text
|
70 |
+
|
71 |
+
# Define the Gradio interface
|
72 |
+
interface = gr.Interface(
|
73 |
+
fn=process_audio,
|
74 |
+
inputs=gr.Audio(sources="microphone", streaming=True, type="filepath"),
|
75 |
+
outputs=gr.Markdown(),
|
76 |
+
title="Dear Gemma",
|
77 |
+
description="Talk to the AI assistant. It completes your sentences in real time.",
|
78 |
+
live=True,
|
79 |
+
allow_flagging="never"
|
80 |
+
)
|
81 |
+
|
82 |
+
if __name__ == "__main__":
|
83 |
+
interface.launch()
|