File size: 4,659 Bytes
e21ea2e
 
 
 
 
 
596c2d8
c9ecfaa
e21ea2e
 
 
 
 
 
 
31dcf44
e21ea2e
 
 
 
 
 
c2aff79
 
e21ea2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51e9979
 
629c826
e21ea2e
 
 
 
 
 
 
 
 
 
 
 
c9ecfaa
e21ea2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9ecfaa
e21ea2e
 
51e9979
e21ea2e
 
 
 
85a854c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import gradio as gr
import pandas as pd
import base64
import os
from openai import OpenAI

client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'))
model_ft_id = os.getenv('model_ft_id')

def process_excel_file(file_path, non_question_columns_str):
    # Load the Excel file into a DataFrame
    df = pd.read_excel(file_path, header=0, index_col=None)

    # Convert non-question columns string to a list and make it lowercase for comparison
    non_question_columns = [col.strip().lower() for col in non_question_columns_str.split(',')]
    # Identify columns that are considered as questions and non-questions(user defined)
    question_columns = [col for col in df.columns if col.lower() not in non_question_columns]
    non_question_data = df[[col for col in df.columns if col.lower() in non_question_columns]]

    # Filter the DataFrame to include only question columns
    df_questions = df[question_columns]
    # Drop Timestamp column
    if "Timestamp" in df_questions.columns:
        df_questions.drop(columns=["Timestamp"], inplace=True)
    
    
    # Extract headers as questions
    questions = list(df_questions.columns)

    # Extract the last row as answer keys
    answer_keys = df_questions.iloc[-1].to_dict()

    # Extract participant answers (excluding the last row which is the answer keys)
    participant_answers = df_questions.iloc[:-1]

    return questions, answer_keys, participant_answers, non_question_data

def process_and_grade(file_path, non_question_columns_str):
    questions, answer_keys, participant_answers, non_question_data = process_excel_file(file_path, non_question_columns_str)

    # Initialize columns for individual question scores based on numeric indices and total score
    num_questions = len(questions)
    for i in range(num_questions):
        participant_answers[f"Q{i+1} Score"] = 0  # Creates score columns .
    participant_answers['Total Points'] = 0
    participant_answers['Grade'] = 0

    # Grade each participant's answers and calculate total score
    for index, row in participant_answers.iterrows():
        total_score = 0
        for i, question in enumerate(questions, start=1):
            participant_answer = row[question]
            correct_answer = answer_keys[question]
            score = grade_answer(question, participant_answer, correct_answer)
            participant_answers.at[index, f"Q{i} Score"] = score  # Update score using numeric index
            total_score += score
        participant_answers.at[index, 'Total Points'] = total_score  # Update total points
        participant_answers.at[index, 'Grade'] = (total_score/(num_questions*2))*100 

    # Concatenate non-question data with updated participant answers for final DataFrame
    final_df = pd.concat([non_question_data.iloc[:-1].reset_index(drop=True), participant_answers.reset_index(drop=True)], axis=1)

    # Save to a new Excel file
    output_file_path = "graded_results.xlsx"
    final_df.to_excel(output_file_path, index=False)

    return output_file_path


def grade_answer(question, participant_answer, key_answer):
    question = str(question)
    participant_answer = str(participant_answer)
    key_answer = str(key_answer)
    """
    Call the fine-tuned model to grade an answer based on the question,
    the participant's answer, and the key answer.
    """
    if participant_answer.strip() == "-" or participant_answer.strip() == "":
        return 0

    task="Evaluate the correctness of a participant's answer compared to the intended answer"
    prompt = f"{task}, Question: {question}\nIntended Answer: {key_answer}\nParticipant Answer: {participant_answer}\n"


    response = client.completions.create(
        model=model_ft_id,
        prompt=prompt,
        max_tokens=1,
        temperature=0,
    )

    # Assuming the model's response is directly the score (0, 1, or 2)
    try:
        score = int(response.choices[0].text.strip())
        return score
    except ValueError:
        # Handle unexpected model response
        return 0


# Set up the Gradio interface
iface = gr.Interface(
    fn=process_and_grade,
    inputs=[
        gr.File(file_count="single", type="filepath"),
        gr.Textbox(lines=2, placeholder="Column1, Column2, Column3, ...", label="Non-Question Columns Like Nams, Id, etc."),
    ],
    outputs=gr.File(label="Download Graded Results"),
    title="Essay Question Grading V0.01",
    description="Upload a spreadsheet and specify non-question columns (separated by commas) to grade. Format your Excel file with the 1st row for questions and the last row for key answers.",
    allow_flagging="never"
)

iface.launch(share=True, debug=True)