Spaces:
Sleeping
Sleeping
File size: 7,130 Bytes
6d3434f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
import gradio as gr
from utils.data_loader import fetch_and_save_chess_data
from utils.game_analysis import (
analyze_games,
generate_monthly_report,
calculate_average_and_median_games,
analyze_streaks,
analyze_sequences,
format_duration
)
from datetime import datetime
import os
import json
import matplotlib.pyplot as plt
import io
from PIL import Image
import plotly.graph_objects as go
import pandas as pd
import csv
logged_in_user = None # Global state to store the logged-in user
# Define your user credentials
auth_users = [
("Sacha", "SachaIsTheBest"),
("Florian", "FlorianIsTheBest"),
("Lucas", "Slevin"),
("Gael", "Kalel"),
("BlueNote", "MamaLinda")
]
DATA_FOLDER = 'data/'
LOG_FILE = 'user_logs.csv'
# Initialize log file if it doesn't exist
if not os.path.exists(LOG_FILE):
with open(LOG_FILE, 'w', newline='') as log_file:
writer = csv.writer(log_file)
writer.writerow(["Username", "Timestamp", "Action", "Query"])
def log_user_action(username, action, query=""):
"""Log user actions to a CSV file."""
timestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
with open(LOG_FILE, 'a', newline='') as log_file:
writer = csv.writer(log_file)
writer.writerow([username, timestamp, action, query])
def get_monthly_report(username, logged_in_user):
"""Fetch data for a given username, reuse existing data if available, and generate a monthly report."""
current_date = datetime.now().strftime('%Y-%m-%d')
filename = os.path.join(DATA_FOLDER, f"{username}_{current_date}.json")
log_user_action(logged_in_user, "Search", username)
if os.path.exists(filename):
print(f"Using existing data file: {filename}")
with open(filename, 'r') as file:
games = json.load(file)
else:
games = fetch_and_save_chess_data(username, filename)
if not games:
return "No data found for the specified username."
games_sorted = sorted(games, key=lambda x: x.get('end_time'))
# Perform monthly analysis
games_per_month, stats_per_month, total_games, total_wins, total_losses, total_timeouts, total_months_played = analyze_games(games, username)
report_df = generate_monthly_report(games_per_month, stats_per_month)
# Calculate average and median games per day
average_games, median_games = calculate_average_and_median_games(games)
# Calculate streak probabilities
win_prob, loss_prob = analyze_streaks(games_sorted, username)
# Calculate sequence probabilities
win_after_wl_prob, win_after_lw_prob = analyze_sequences(games_sorted, username)
# Format the duration of months played
formatted_duration = format_duration(total_months_played)
# Prepare the text summary
summary_text = (
f"Total duration played: {formatted_duration}\n"
f"Total games played: {total_games}\n"
f"Total wins: {total_wins}\n"
f"Total losses: {total_losses}\n"
f"Total timeouts: {total_timeouts}\n"
f"Average games played per day: {average_games:.2f}\n"
f"Median games played per day: {median_games}\n"
f"Probability of winning the next game after a win in the same hour: {win_prob:.2f}%\n"
f"Probability of losing the next game after a loss in the same hour: {loss_prob:.2f}%\n"
f"Probability of winning the next game after a 'win-loss' sequence in the same hour: {win_after_wl_prob:.2f}%\n"
f"Probability of winning the next game after a 'loss-win' sequence in the same hour: {win_after_lw_prob:.2f}%"
)
stacked_bar_img = generate_stacked_bar_chart(report_df)
return report_df, summary_text, stacked_bar_img
def generate_stacked_bar_chart(report_df):
"""Generate an interactive stacked bar chart with wins, losses, and a line plot for timeouts using Plotly."""
# Extract data
months = pd.to_datetime(report_df['Month']).dt.strftime('%b, %Y')
wins = report_df['Wins']
losses = report_df['Losses']
timeouts = report_df['Timeout Rate (%)']
total_games = report_df['Games Played']
# Create the figure
fig = go.Figure()
# Add wins bars
fig.add_trace(go.Bar(
x=months,
y=wins,
name='Wins',
marker=dict(color='#1f77b4'),
hovertemplate='<b>Wins</b>: %{y}<extra></extra>'
))
# Add losses bars stacked on top of wins
fig.add_trace(go.Bar(
x=months,
y=losses,
name='Losses',
marker=dict(color='#ff7f0e'),
hovertemplate='<b>Losses</b>: %{y}<extra></extra>'
))
# Add timeouts as a line plot
fig.add_trace(go.Scatter(
x=months,
y=timeouts,
mode='lines+markers',
name='Timeouts',
line=dict(color='#da5bac', width=2),
hovertemplate='<b>Timeouts</b>: %{y:.1f}%<extra></extra>'
))
# Add rotated annotations for total games on top of each bar
for i, total in enumerate(total_games):
fig.add_annotation(
x=months[i],
y=total + 5,
text=str(int(total)),
showarrow=False,
font=dict(size=12, color='white'),
align='center',
textangle=-45 # Rotate the text label by -45 degrees
)
# Update layout for stacked bars and hover information
fig.update_layout(
barmode='stack',
title='Monthly Win/Loss Stacked Bar Chart with Total Games and Timeouts',
xaxis_title='Month',
yaxis_title='Count',
legend_title='Legend',
hovermode='x unified',
template='plotly_dark'
)
# Return the Plotly figure
return fig
logged_in_user_state = gr.State()
# Authentication callback function
def auth_callback(username, password):
global logged_in_user
valid_users = dict(auth_users)
if username in valid_users and valid_users[username] == password:
log_user_action(username, "Login")
logged_in_user = username # Store the logged-in user globally
return True
return False
def get_report_with_user(username):
global logged_in_user
return get_monthly_report(username, logged_in_user or "Unknown")
# Custom layout using gr.Blocks with CSS
with gr.Blocks(css="style.css", theme=gr.themes.Soft()) as app:
gr.Markdown("# Chess Analysis App")
username_input = gr.Textbox(label="Chess.com Username", placeholder="Enter Chess.com username")
submit_button = gr.Button("Submit")
# Define outputs
output_data = gr.Dataframe(headers=["Month", "Games Played", "Wins", "Losses", "Win Rate (%)", "Loss Rate (%)", "Timeout Rate (%)"])
summary_text = gr.Textbox(label="Summary", interactive=False)
# stacked_bar_img = gr.Image(label="Monthly Stacked Bar Chart with Timeouts")
stacked_bar_img = gr.Plot(label="Monthly Stacked Bar Chart with Timeouts")
# Link the click event
submit_button.click(
fn=get_report_with_user,
inputs=[username_input],
outputs=[output_data, summary_text, stacked_bar_img]
)
app.launch(auth=auth_users, share=True)
|