import gradio as gr
from utils.data_loader import fetch_and_save_chess_data
from utils.game_analysis import (
analyze_games,
generate_monthly_report,
calculate_average_and_median_games,
analyze_streaks,
analyze_sequences,
format_duration
)
from datetime import datetime
import os
import json
import matplotlib.pyplot as plt
import io
from PIL import Image
import plotly.graph_objects as go
import pandas as pd
import csv
logged_in_user = None # Global state to store the logged-in user
# Define your user credentials
auth_users = [
("Sacha", "SachaIsTheBest"),
("Florian", "FlorianIsTheBest"),
("Lucas", "Slevin"),
("Gael", "Kalel"),
("BlueNote", "MamaLinda")
]
DATA_FOLDER = 'data/'
LOG_FILE = 'user_logs.csv'
# Initialize log file if it doesn't exist
if not os.path.exists(LOG_FILE):
with open(LOG_FILE, 'w', newline='') as log_file:
writer = csv.writer(log_file)
writer.writerow(["Username", "Timestamp", "Action", "Query"])
def log_user_action(username, action, query=""):
"""Log user actions to a CSV file."""
timestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
with open(LOG_FILE, 'a', newline='') as log_file:
writer = csv.writer(log_file)
writer.writerow([username, timestamp, action, query])
def get_monthly_report(username, logged_in_user):
"""Fetch data for a given username, reuse existing data if available, and generate a monthly report."""
current_date = datetime.now().strftime('%Y-%m-%d')
filename = os.path.join(DATA_FOLDER, f"{username}_{current_date}.json")
log_user_action(logged_in_user, "Search", username)
if os.path.exists(filename):
print(f"Using existing data file: {filename}")
with open(filename, 'r') as file:
games = json.load(file)
else:
games = fetch_and_save_chess_data(username, filename)
if not games:
return "No data found for the specified username."
games_sorted = sorted(games, key=lambda x: x.get('end_time'))
# Perform monthly analysis
games_per_month, stats_per_month, total_games, total_wins, total_losses, total_timeouts, total_months_played = analyze_games(games, username)
report_df = generate_monthly_report(games_per_month, stats_per_month)
# Calculate average and median games per day
average_games, median_games = calculate_average_and_median_games(games)
# Calculate streak probabilities
win_prob, loss_prob = analyze_streaks(games_sorted, username)
# Calculate sequence probabilities
win_after_wl_prob, win_after_lw_prob = analyze_sequences(games_sorted, username)
# Format the duration of months played
formatted_duration = format_duration(total_months_played)
# Prepare the text summary
summary_text = (
f"Total duration played: {formatted_duration}\n"
f"Total games played: {total_games}\n"
f"Total wins: {total_wins}\n"
f"Total losses: {total_losses}\n"
f"Total timeouts: {total_timeouts}\n"
f"Average games played per day: {average_games:.2f}\n"
f"Median games played per day: {median_games}\n"
f"Probability of winning the next game after a win in the same hour: {win_prob:.2f}%\n"
f"Probability of losing the next game after a loss in the same hour: {loss_prob:.2f}%\n"
f"Probability of winning the next game after a 'win-loss' sequence in the same hour: {win_after_wl_prob:.2f}%\n"
f"Probability of winning the next game after a 'loss-win' sequence in the same hour: {win_after_lw_prob:.2f}%"
)
stacked_bar_img = generate_stacked_bar_chart(report_df)
return report_df, summary_text, stacked_bar_img
def generate_stacked_bar_chart(report_df):
"""Generate an interactive stacked bar chart with wins, losses, and a line plot for timeouts using Plotly."""
# Extract data
months = pd.to_datetime(report_df['Month']).dt.strftime('%b, %Y')
wins = report_df['Wins']
losses = report_df['Losses']
timeouts = report_df['Timeout Rate (%)']
total_games = report_df['Games Played']
# Create the figure
fig = go.Figure()
# Add wins bars
fig.add_trace(go.Bar(
x=months,
y=wins,
name='Wins',
marker=dict(color='#1f77b4'),
hovertemplate='Wins: %{y}'
))
# Add losses bars stacked on top of wins
fig.add_trace(go.Bar(
x=months,
y=losses,
name='Losses',
marker=dict(color='#ff7f0e'),
hovertemplate='Losses: %{y}'
))
# Add timeouts as a line plot
fig.add_trace(go.Scatter(
x=months,
y=timeouts,
mode='lines+markers',
name='Timeouts',
line=dict(color='#da5bac', width=2),
hovertemplate='Timeouts: %{y:.1f}%'
))
# Add rotated annotations for total games on top of each bar
for i, total in enumerate(total_games):
fig.add_annotation(
x=months[i],
y=total + 5,
text=str(int(total)),
showarrow=False,
font=dict(size=12, color='white'),
align='center',
textangle=-45 # Rotate the text label by -45 degrees
)
# Update layout for stacked bars and hover information
fig.update_layout(
barmode='stack',
title='Monthly Win/Loss Stacked Bar Chart with Total Games and Timeouts',
xaxis_title='Month',
yaxis_title='Count',
legend_title='Legend',
hovermode='x unified',
template='plotly_dark'
)
# Return the Plotly figure
return fig
logged_in_user_state = gr.State()
# Authentication callback function
def auth_callback(username, password):
global logged_in_user
valid_users = dict(auth_users)
if username in valid_users and valid_users[username] == password:
log_user_action(username, "Login")
logged_in_user = username # Store the logged-in user globally
return True
return False
def get_report_with_user(username):
global logged_in_user
return get_monthly_report(username, logged_in_user or "Unknown")
# Custom layout using gr.Blocks with CSS
with gr.Blocks(css="style.css", theme=gr.themes.Soft()) as app:
gr.Markdown("# Chess Analysis App")
username_input = gr.Textbox(label="Chess.com Username", placeholder="Enter Chess.com username")
submit_button = gr.Button("Submit")
# Define outputs
output_data = gr.Dataframe(headers=["Month", "Games Played", "Wins", "Losses", "Win Rate (%)", "Loss Rate (%)", "Timeout Rate (%)"])
summary_text = gr.Textbox(label="Summary", interactive=False)
# stacked_bar_img = gr.Image(label="Monthly Stacked Bar Chart with Timeouts")
stacked_bar_img = gr.Plot(label="Monthly Stacked Bar Chart with Timeouts")
# Link the click event
submit_button.click(
fn=get_report_with_user,
inputs=[username_input],
outputs=[output_data, summary_text, stacked_bar_img]
)
app.launch() # No authentication for Hugging Face Spaces