File size: 5,307 Bytes
9cdcbb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import torch
import torch.nn as nn
from torch.nn import functional as F
import json
import logging 


block_size = 256
vocab_size = 500
n_embed = 384
dropout = 0.2
n_head = 6
n_layer = 6

class Head(nn.Module):
    def __init__(self, head_size=16):
        super().__init__()
        self.query = nn.Linear(n_embed, head_size, bias=False)
        self.key = nn.Linear(n_embed, head_size, bias=False)
        self.value = nn.Linear(n_embed, head_size, bias=False)
        self.register_buffer('tril',torch.tril(torch.ones(block_size,block_size)))
        self.dropout = nn.Dropout(dropout)
       


    def forward(self,x):
        B,T,C = x.shape

        q = self.query(x)
        k = self.key(x)

        wei = (q @ k.transpose(-2,-1)) * (k.shape[-1]**(-0.5))
        wei = wei.masked_fill(self.tril[:T,:T]==0, float('-inf'))
        wei = F.softmax(wei, dim=-1)
        wei = self.dropout(wei)

        v = self.value(x)

        out = wei @ v ## (B,T,HS)

        return out
    
class MultiHeadAttention(nn.Module):
    def __init__(self,num_heads, head_size) :
        super().__init__()

        self.heads = nn.ModuleList(Head(head_size=head_size) for _ in range(num_heads))
        self.proj = nn.Linear(head_size * num_heads, n_embed)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        out = torch.cat([h(x) for h in self.heads], dim=-1)
        out = self.dropout(self.proj(out))
        return out

class FeedForward(nn.Module):
    def __init__(self,n_embed) -> None:
        super().__init__()
        self.net = nn.Sequential(
            nn.Linear(n_embed,4* n_embed),
            nn.ReLU(),
            nn.Linear(4 * n_embed, n_embed),
            nn.Dropout(dropout),
        )

    def forward(self, x):
        x = self.net(x)
        return x

class decoder_block(nn.Module):
    def __init__(self, n_embed, n_heads):
        super().__init__()
        self.sa = MultiHeadAttention(n_heads,n_embed//n_heads)
        self.ln1 = nn.LayerNorm(n_embed)
        self.ln2 = nn.LayerNorm(n_embed)
        self.ffwd = FeedForward(n_embed)

    def forward(self, x):
        x = x + self.sa(self.ln1(x))
        x = x + self.ffwd(self.ln2(x))
        return x



class my_gpt(nn.Module):
    def __init__(self, block_size = 256):
        super().__init__()
        self.block_size = block_size ##context window size
        self.token_embed = nn.Embedding(vocab_size, n_embed)
        self.pos_embed = nn.Embedding(vocab_size, n_embed)
        self.lm_head = nn.Linear(n_embed, vocab_size)
        self.sa_head = Head(vocab_size)
        self.d_blocks = nn.Sequential(*[decoder_block(n_embed=n_embed,n_heads=n_head) for _ in range(n_layer)])
        self.ln_f = nn.LayerNorm(n_embed) # final layer norm

        self.apply(self._init_weights)

    def _init_weights(self, module):
        if isinstance(module, nn.Linear):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
            if module.bias is not None:
                torch.nn.init.zeros_(module.bias)
        elif isinstance(module, nn.Embedding):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)

    def forward(self, idx, targets = None):
        """
        Args:
            idx: int(B,T) Token ids
            targets :

        Returns:
            logits
        """
        # print("idx ", idx)
        B, T = idx.shape ##
        tok_emd = self.token_embed(idx) ##(B,T,C)
        pos_emd = self.pos_embed(idx)

        
        x = tok_emd + pos_emd
        # print("x1 ", x.shape)

        x = self.d_blocks(x) #
        x = self.ln_f(x) # (B,T,C)

        logits = self.lm_head(x) ##(B,T,vocab_size)
        if targets is None:
            loss = None
        else:
            B, T, C = logits.shape
            # print("logits ", logits.shape)
            logits = logits.view(B*T,C)
            targets = targets.view(B*T)

            loss = F.cross_entropy(logits, targets)
        # print("Logits", logits.shape)
            
        return logits, loss


    def generate(self, context : torch.tensor, max_new_tokens: int = 46, use_cache = False):
        """
        Generates the next "max_new_tokens" number of tokens.

        Args:
            context (B,T):
            max_new_tokens (int):

        Returns:
            [token] : List of generated tokens.
        """
        # print("Context:" , context)
        for _ in range(max_new_tokens): 
            ##Take only last allowed number of tokens
            idx_tokens = context[:, -self.block_size:]

            ##generate the next token
            logits, loss = self(idx_tokens)

            ##Take only last allowed number of tokens
            logits = logits[:,-1,:] ##(B,vocab_size)
            # print("logits:" , logits.shape)

            probs = F.softmax(logits, dim= -1)
            idx_next = torch.multinomial(probs,num_samples=1) ##(B,1)
   
            context = torch.concatenate([context, idx_next], dim=1)

        return context
    
    def save_pretrained(self, path):
        torch.save(self.state_dict(),path)
        print("Saved pretrained Successfully")

    @classmethod
    def load_pretrained(cls, path):
        print("Loading pretrained model...")
        model = cls()
        model.load_state_dict(torch.load(path))
        return  model