Last commit not found
import torch | |
import torch.nn as nn | |
from torch.nn import functional as F | |
import json | |
import logging | |
block_size = 256 | |
vocab_size = 500 | |
n_embed = 384 | |
dropout = 0.2 | |
n_head = 6 | |
n_layer = 6 | |
class Head(nn.Module): | |
def __init__(self, head_size=16): | |
super().__init__() | |
self.query = nn.Linear(n_embed, head_size, bias=False) | |
self.key = nn.Linear(n_embed, head_size, bias=False) | |
self.value = nn.Linear(n_embed, head_size, bias=False) | |
self.register_buffer('tril',torch.tril(torch.ones(block_size,block_size))) | |
self.dropout = nn.Dropout(dropout) | |
def forward(self,x): | |
B,T,C = x.shape | |
q = self.query(x) | |
k = self.key(x) | |
wei = (q @ k.transpose(-2,-1)) * (k.shape[-1]**(-0.5)) | |
wei = wei.masked_fill(self.tril[:T,:T]==0, float('-inf')) | |
wei = F.softmax(wei, dim=-1) | |
wei = self.dropout(wei) | |
v = self.value(x) | |
out = wei @ v ## (B,T,HS) | |
return out | |
class MultiHeadAttention(nn.Module): | |
def __init__(self,num_heads, head_size) : | |
super().__init__() | |
self.heads = nn.ModuleList(Head(head_size=head_size) for _ in range(num_heads)) | |
self.proj = nn.Linear(head_size * num_heads, n_embed) | |
self.dropout = nn.Dropout(dropout) | |
def forward(self, x): | |
out = torch.cat([h(x) for h in self.heads], dim=-1) | |
out = self.dropout(self.proj(out)) | |
return out | |
class FeedForward(nn.Module): | |
def __init__(self,n_embed) -> None: | |
super().__init__() | |
self.net = nn.Sequential( | |
nn.Linear(n_embed,4* n_embed), | |
nn.ReLU(), | |
nn.Linear(4 * n_embed, n_embed), | |
nn.Dropout(dropout), | |
) | |
def forward(self, x): | |
x = self.net(x) | |
return x | |
class decoder_block(nn.Module): | |
def __init__(self, n_embed, n_heads): | |
super().__init__() | |
self.sa = MultiHeadAttention(n_heads,n_embed//n_heads) | |
self.ln1 = nn.LayerNorm(n_embed) | |
self.ln2 = nn.LayerNorm(n_embed) | |
self.ffwd = FeedForward(n_embed) | |
def forward(self, x): | |
x = x + self.sa(self.ln1(x)) | |
x = x + self.ffwd(self.ln2(x)) | |
return x | |
class my_gpt(nn.Module): | |
def __init__(self, block_size = 256): | |
super().__init__() | |
self.block_size = block_size ##context window size | |
self.token_embed = nn.Embedding(vocab_size, n_embed) | |
self.pos_embed = nn.Embedding(vocab_size, n_embed) | |
self.lm_head = nn.Linear(n_embed, vocab_size) | |
self.sa_head = Head(vocab_size) | |
self.d_blocks = nn.Sequential(*[decoder_block(n_embed=n_embed,n_heads=n_head) for _ in range(n_layer)]) | |
self.ln_f = nn.LayerNorm(n_embed) # final layer norm | |
self.apply(self._init_weights) | |
def _init_weights(self, module): | |
if isinstance(module, nn.Linear): | |
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) | |
if module.bias is not None: | |
torch.nn.init.zeros_(module.bias) | |
elif isinstance(module, nn.Embedding): | |
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) | |
def forward(self, idx, targets = None): | |
""" | |
Args: | |
idx: int(B,T) Token ids | |
targets : | |
Returns: | |
logits | |
""" | |
# print("idx ", idx) | |
B, T = idx.shape ## | |
tok_emd = self.token_embed(idx) ##(B,T,C) | |
pos_emd = self.pos_embed(idx) | |
x = tok_emd + pos_emd | |
# print("x1 ", x.shape) | |
x = self.d_blocks(x) # | |
x = self.ln_f(x) # (B,T,C) | |
logits = self.lm_head(x) ##(B,T,vocab_size) | |
if targets is None: | |
loss = None | |
else: | |
B, T, C = logits.shape | |
# print("logits ", logits.shape) | |
logits = logits.view(B*T,C) | |
targets = targets.view(B*T) | |
loss = F.cross_entropy(logits, targets) | |
# print("Logits", logits.shape) | |
return logits, loss | |
def generate(self, context : torch.tensor, max_new_tokens: int = 46, use_cache = False): | |
""" | |
Generates the next "max_new_tokens" number of tokens. | |
Args: | |
context (B,T): | |
max_new_tokens (int): | |
Returns: | |
[token] : List of generated tokens. | |
""" | |
# print("Context:" , context) | |
for _ in range(max_new_tokens): | |
##Take only last allowed number of tokens | |
idx_tokens = context[:, -self.block_size:] | |
##generate the next token | |
logits, loss = self(idx_tokens) | |
##Take only last allowed number of tokens | |
logits = logits[:,-1,:] ##(B,vocab_size) | |
# print("logits:" , logits.shape) | |
probs = F.softmax(logits, dim= -1) | |
idx_next = torch.multinomial(probs,num_samples=1) ##(B,1) | |
context = torch.concatenate([context, idx_next], dim=1) | |
return context | |
def save_pretrained(self, path): | |
torch.save(self.state_dict(),path) | |
print("Saved pretrained Successfully") | |
def load_pretrained(cls, path): | |
print("Loading pretrained model...") | |
model = cls() | |
model.load_state_dict(torch.load(path)) | |
return model | |