File size: 10,272 Bytes
0886d5c
 
 
 
78af5ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0886d5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78af5ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0886d5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7150045
 
0886d5c
7150045
0886d5c
7150045
 
0886d5c
 
 
 
 
 
 
 
 
 
 
7150045
0886d5c
 
 
 
7150045
 
 
 
 
 
0886d5c
 
7150045
 
 
 
 
 
 
 
 
0886d5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78af5ae
 
 
 
 
0886d5c
 
 
 
 
 
78af5ae
 
 
 
 
 
 
 
 
 
 
 
 
 
0886d5c
78af5ae
 
 
 
 
 
 
 
 
0886d5c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import streamlit as st
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.neighbors import NearestNeighbors
import requests
import os

# Function to get Spotify access token
def get_spotify_token(client_id, client_secret):
    url = "https://accounts.spotify.com/api/token"
    headers = {
        "Content-Type": "application/x-www-form-urlencoded"
    }
    data = {
        "grant_type": "client_credentials"
    }
    response = requests.post(url, headers=headers, data=data, auth=(client_id, client_secret))
    if response.status_code == 200:
        return response.json().get("access_token")
    return None

# Function to fetch Spotify track details
def fetch_spotify_track(query, token):
    url = "https://api.spotify.com/v1/search"
    headers = {
        "Authorization": f"Bearer {token}"
    }
    params = {
        "q": query,
        "type": "track",
        "limit": 1
    }
    response = requests.get(url, headers=headers, params=params)
    if response.status_code == 200:
        data = response.json()
        if data["tracks"]["items"]:
            track = data["tracks"]["items"][0]
            return {
                "thumbnail": track["album"]["images"][0]["url"],  # Get the largest available thumbnail
                "spotify_link": track["external_urls"]["spotify"]  # Spotify track link
            }
    return {"thumbnail": None, "spotify_link": None}


# Page config
st.set_page_config(
    page_title="MusicMind - Smart Music Recommendations",
    page_icon="🎵",
    layout="wide"
)

# Custom CSS
st.markdown("""
<style>
    .main {
        background-color: #f9f9f9;
    }
    .stButton button {
        background-color: #76818e;
        color: white;
        border-radius: 20px;
        padding: 10px 25px;
        border: none;
        transition: background-color 0.3s;
    }
    .stButton button:hover {
        background-color: #5348d4;
    }
    .recommendation-card {
        background-color: #76818e;
        padding: 20px;
        border-radius: 10px;
        box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
        margin: 10px 0;
        transition: transform 0.3s;
    }
    .recommendation-card:hover {
        transform: translateY(-5px);
    }
    .recommendation-card h3 {
        font-family: 'Poppins', sans-serif;
        color: #e7d7c1;
    }
    .recommendation-card p {
        font-family: 'Roboto', sans-serif;
        color: #262730;
    }
    .recommendation-card a {
        text-decoration: none;
        color: #e7d7c1;
        font-weight: 600;
        display: inline-block;
        margin-top: 10px;
        transition: color 0.3s;
    }
    .youtube-link {
        background-color: #ff4b4b;
        color: white !important;
        padding: 8px 16px;
        border-radius: 20px;
        text-decoration: none;
        display: inline-flex;
        align-items: center;
        gap: 8px;
        font-family: 'Roboto', sans-serif;
        font-weight: 500;
        transition: all 0.3s ease;
    }
    .youtube-link:before {
        content: "▶";
        font-size: 0.8em;
    }
    .youtube-link:hover {
        background-color: #cc0000;
        transform: scale(1.05);
        box-shadow: 0 4px 12px rgba(255, 0, 0, 0.2);
    }
    .spotify-link {
        background-color: #1db954;
        color: white !important;
        padding: 8px 16px;
        border-radius: 20px;
        text-decoration: none;
        display: inline-flex;
        align-items: center;
        gap: 8px;
        font-family: 'Roboto', sans-serif;
        font-weight: 500;
        transition: all 0.3s ease;
    }
    .spotify-link:before {
        content: "🎧";
        font-size: 0.8em;
    }
    .spotify-link:hover {
        background-color: #cc0000;
        transform: scale(1.05);
        box-shadow: 0 4px 12px rgba(255, 0, 0, 0.2);
    }
</style>
<link href="https://fonts.googleapis.com/css2?family=Poppins:wght@400;600&family=Roboto:wght@400;500&display=swap" rel="stylesheet">
""", unsafe_allow_html=True)

# Load and prepare data
@st.cache_data
def load_data():
    df = pd.read_csv("song_dataset.csv")
    return df

df = load_data()

@st.cache_resource
def run_imps(df):
    required_columns = ['user', 'song', 'play_count', 'title', 'artist_name', 'release']
    if not all(col in df.columns for col in required_columns):
        raise ValueError(f"Dataset must contain the following columns: {required_columns}")

    df = df.drop_duplicates(subset=['song', 'title', 'artist_name', 'release'])
    df['combined_features'] = (df['title'] + " " + df['artist_name'] + " " + df['release']).fillna("")

    # Content-Based Filtering
    tfidf = TfidfVectorizer(max_features=5000, stop_words='english')
    tfidf_matrix = tfidf.fit_transform(df['combined_features'])

    nn = NearestNeighbors(n_neighbors=10, metric='cosine', algorithm='auto')
    nn.fit(tfidf_matrix)

    # Collaborative Filtering
    user_song_matrix = df.pivot_table(index='user', columns='song', values='play_count', fill_value=0)
    knn_cf = NearestNeighbors(n_neighbors=10, metric='cosine', algorithm='auto')
    knn_cf.fit(user_song_matrix)

    return df, tfidf, tfidf_matrix, nn, user_song_matrix, knn_cf

df = load_data()
df, tfidf, tfidf_matrix, nn, user_song_matrix, knn_cf = run_imps(df)

# Content-based recommendation function
def content_based_recommend(song_title, top_n=5):
    try:
        idx = df[df['title'] == song_title].index[0]
        distances, indices = nn.kneighbors(tfidf_matrix[idx], n_neighbors=top_n + 1)
        song_indices = indices.flatten()[1:]
        return df.iloc[song_indices][['title', 'artist_name', 'release']].drop_duplicates()
    except IndexError:
        return pd.DataFrame(columns=['title', 'artist_name', 'release'])

# Collaborative recommendation function using KNN
def collaborative_recommend(user_id, top_n=5):
    if user_id not in user_song_matrix.index:
        return pd.DataFrame(columns=['title', 'artist_name', 'release'])

    # Get the nearest neighbors for the user
    user_index = user_song_matrix.index.get_loc(user_id)
    distances, indices = knn_cf.kneighbors(user_song_matrix.iloc[user_index].values.reshape(1, -1), n_neighbors=top_n + 1)
    
    # Collect recommendations from neighbors
    neighbors = indices.flatten()[1:]
    listened_songs = user_song_matrix.loc[user_id][user_song_matrix.loc[user_id] > 0].index

    recommendations = {}
    for neighbor in neighbors:
        neighbor_songs = user_song_matrix.iloc[neighbor]
        for song, play_count in neighbor_songs.items():
            if song not in listened_songs and play_count > 0:
                recommendations[song] = recommendations.get(song, 0) + play_count

    # Sort songs by aggregated scores
    recommended_songs = sorted(recommendations.items(), key=lambda x: x[1], reverse=True)[:top_n]
    recommended_song_ids = [song for song, _ in recommended_songs]
    return df[df['song'].isin(recommended_song_ids)][['title', 'artist_name', 'release']].drop_duplicates()

# Hybrid Recommendation
def hybrid_recommendv2(user_id, song_titles, top_n=5):
    collab_recs = collaborative_recommend(user_id, top_n)
    content_recs = pd.DataFrame()
    for song_title in song_titles:
        content_recs = pd.concat([content_recs, content_based_recommend(song_title, top_n)], ignore_index=True)
    hybrid_recs = pd.concat([collab_recs, content_recs]).drop_duplicates().sample(frac=1).reset_index(drop=True)
    return hybrid_recs.head(top_n)

# Sidebar and Main UI
with st.sidebar:
    st.header("🎯 Customize Your Recommendations")
    user_id = st.selectbox(
        "Select User ID",
        options=df['user'].unique(),
        index=0
    )
    user_songs = df[df['user'] == user_id]['title'].unique()
    song_title = st.multiselect(
        "Select Songs You Like",
        options=user_songs,
        default=user_songs[:1] if len(user_songs) > 0 else None
    )
    top_n = st.slider("Number of Recommendations", min_value=1, max_value=10, value=5)
    get_recs = st.button("Get Recommendations! 🎶")

if get_recs:
    st.header("🎵 Your Recommendations")
    recommendations = hybrid_recommendv2(user_id, song_title, top_n)
    SPOTIFY_CLIENT_ID = os.getenv("SPOTIFY_CLIENT_ID", None)
    SPOTIFY_CLIENT_SECRET = os.getenv("SPOTIFY_CLIENT_SECRET", None)

# Get Spotify token
    spotify_token = get_spotify_token(SPOTIFY_CLIENT_ID, SPOTIFY_CLIENT_SECRET)
    if recommendations.empty:
        st.error("No recommendations found. Try selecting different songs or users.")
    else:
        st.balloons()
        for idx, row in recommendations.iterrows():
            youtube_link = f"https://www.youtube.com/results?search_query={row['title']}+{row['artist_name']}"
            spotify_data = fetch_spotify_track(f"{row['title']} {row['artist_name']}", spotify_token)
            spotify_link = spotify_data.get("spotify_link", "#")
            thumbnail_url = spotify_data.get("thumbnail")
            # st.markdown(f"""
            #     <div class="recommendation-card">
            #         <h3>{row['title']}</h3>
            #         <p><strong>Artist:</strong> {row['artist_name']}</p>
            #         <p><strong>Album:</strong> {row['release']}</p>
            #         <a href="{youtube_link}" target="_blank" class="youtube-link">
            #             Watch on YouTube
            #         </a>

            #     </div>
            # """, unsafe_allow_html=True)
            st.markdown(f"""
                <div class="recommendation-card" style="display: flex; align-items: center; gap: 20px;">
                    {"<img src='" + thumbnail_url + "' alt='Song Thumbnail' style='width:150px; height:150px; border-radius:10px; object-fit: cover;'>" if thumbnail_url else ""}
                    <div>
                        <h3>{row['title']}</h3>
                        <p><strong>Artist:</strong> {row['artist_name']}</p>
                        <p><strong>Album:</strong> {row['release']}</p>
                        <a href="{youtube_link}" target="_blank" class="youtube-link">Watch on YouTube</a>
                        <a href="{spotify_link}" target="_blank" class="spotify-link">Play on Spotify</a>
                    </div>
                </div>
            """, unsafe_allow_html=True)