File size: 10,272 Bytes
0886d5c 78af5ae 0886d5c 78af5ae 0886d5c 7150045 0886d5c 7150045 0886d5c 7150045 0886d5c 7150045 0886d5c 7150045 0886d5c 7150045 0886d5c 78af5ae 0886d5c 78af5ae 0886d5c 78af5ae 0886d5c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
import streamlit as st
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.neighbors import NearestNeighbors
import requests
import os
# Function to get Spotify access token
def get_spotify_token(client_id, client_secret):
url = "https://accounts.spotify.com/api/token"
headers = {
"Content-Type": "application/x-www-form-urlencoded"
}
data = {
"grant_type": "client_credentials"
}
response = requests.post(url, headers=headers, data=data, auth=(client_id, client_secret))
if response.status_code == 200:
return response.json().get("access_token")
return None
# Function to fetch Spotify track details
def fetch_spotify_track(query, token):
url = "https://api.spotify.com/v1/search"
headers = {
"Authorization": f"Bearer {token}"
}
params = {
"q": query,
"type": "track",
"limit": 1
}
response = requests.get(url, headers=headers, params=params)
if response.status_code == 200:
data = response.json()
if data["tracks"]["items"]:
track = data["tracks"]["items"][0]
return {
"thumbnail": track["album"]["images"][0]["url"], # Get the largest available thumbnail
"spotify_link": track["external_urls"]["spotify"] # Spotify track link
}
return {"thumbnail": None, "spotify_link": None}
# Page config
st.set_page_config(
page_title="MusicMind - Smart Music Recommendations",
page_icon="🎵",
layout="wide"
)
# Custom CSS
st.markdown("""
<style>
.main {
background-color: #f9f9f9;
}
.stButton button {
background-color: #76818e;
color: white;
border-radius: 20px;
padding: 10px 25px;
border: none;
transition: background-color 0.3s;
}
.stButton button:hover {
background-color: #5348d4;
}
.recommendation-card {
background-color: #76818e;
padding: 20px;
border-radius: 10px;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
margin: 10px 0;
transition: transform 0.3s;
}
.recommendation-card:hover {
transform: translateY(-5px);
}
.recommendation-card h3 {
font-family: 'Poppins', sans-serif;
color: #e7d7c1;
}
.recommendation-card p {
font-family: 'Roboto', sans-serif;
color: #262730;
}
.recommendation-card a {
text-decoration: none;
color: #e7d7c1;
font-weight: 600;
display: inline-block;
margin-top: 10px;
transition: color 0.3s;
}
.youtube-link {
background-color: #ff4b4b;
color: white !important;
padding: 8px 16px;
border-radius: 20px;
text-decoration: none;
display: inline-flex;
align-items: center;
gap: 8px;
font-family: 'Roboto', sans-serif;
font-weight: 500;
transition: all 0.3s ease;
}
.youtube-link:before {
content: "▶";
font-size: 0.8em;
}
.youtube-link:hover {
background-color: #cc0000;
transform: scale(1.05);
box-shadow: 0 4px 12px rgba(255, 0, 0, 0.2);
}
.spotify-link {
background-color: #1db954;
color: white !important;
padding: 8px 16px;
border-radius: 20px;
text-decoration: none;
display: inline-flex;
align-items: center;
gap: 8px;
font-family: 'Roboto', sans-serif;
font-weight: 500;
transition: all 0.3s ease;
}
.spotify-link:before {
content: "🎧";
font-size: 0.8em;
}
.spotify-link:hover {
background-color: #cc0000;
transform: scale(1.05);
box-shadow: 0 4px 12px rgba(255, 0, 0, 0.2);
}
</style>
<link href="https://fonts.googleapis.com/css2?family=Poppins:wght@400;600&family=Roboto:wght@400;500&display=swap" rel="stylesheet">
""", unsafe_allow_html=True)
# Load and prepare data
@st.cache_data
def load_data():
df = pd.read_csv("song_dataset.csv")
return df
df = load_data()
@st.cache_resource
def run_imps(df):
required_columns = ['user', 'song', 'play_count', 'title', 'artist_name', 'release']
if not all(col in df.columns for col in required_columns):
raise ValueError(f"Dataset must contain the following columns: {required_columns}")
df = df.drop_duplicates(subset=['song', 'title', 'artist_name', 'release'])
df['combined_features'] = (df['title'] + " " + df['artist_name'] + " " + df['release']).fillna("")
# Content-Based Filtering
tfidf = TfidfVectorizer(max_features=5000, stop_words='english')
tfidf_matrix = tfidf.fit_transform(df['combined_features'])
nn = NearestNeighbors(n_neighbors=10, metric='cosine', algorithm='auto')
nn.fit(tfidf_matrix)
# Collaborative Filtering
user_song_matrix = df.pivot_table(index='user', columns='song', values='play_count', fill_value=0)
knn_cf = NearestNeighbors(n_neighbors=10, metric='cosine', algorithm='auto')
knn_cf.fit(user_song_matrix)
return df, tfidf, tfidf_matrix, nn, user_song_matrix, knn_cf
df = load_data()
df, tfidf, tfidf_matrix, nn, user_song_matrix, knn_cf = run_imps(df)
# Content-based recommendation function
def content_based_recommend(song_title, top_n=5):
try:
idx = df[df['title'] == song_title].index[0]
distances, indices = nn.kneighbors(tfidf_matrix[idx], n_neighbors=top_n + 1)
song_indices = indices.flatten()[1:]
return df.iloc[song_indices][['title', 'artist_name', 'release']].drop_duplicates()
except IndexError:
return pd.DataFrame(columns=['title', 'artist_name', 'release'])
# Collaborative recommendation function using KNN
def collaborative_recommend(user_id, top_n=5):
if user_id not in user_song_matrix.index:
return pd.DataFrame(columns=['title', 'artist_name', 'release'])
# Get the nearest neighbors for the user
user_index = user_song_matrix.index.get_loc(user_id)
distances, indices = knn_cf.kneighbors(user_song_matrix.iloc[user_index].values.reshape(1, -1), n_neighbors=top_n + 1)
# Collect recommendations from neighbors
neighbors = indices.flatten()[1:]
listened_songs = user_song_matrix.loc[user_id][user_song_matrix.loc[user_id] > 0].index
recommendations = {}
for neighbor in neighbors:
neighbor_songs = user_song_matrix.iloc[neighbor]
for song, play_count in neighbor_songs.items():
if song not in listened_songs and play_count > 0:
recommendations[song] = recommendations.get(song, 0) + play_count
# Sort songs by aggregated scores
recommended_songs = sorted(recommendations.items(), key=lambda x: x[1], reverse=True)[:top_n]
recommended_song_ids = [song for song, _ in recommended_songs]
return df[df['song'].isin(recommended_song_ids)][['title', 'artist_name', 'release']].drop_duplicates()
# Hybrid Recommendation
def hybrid_recommendv2(user_id, song_titles, top_n=5):
collab_recs = collaborative_recommend(user_id, top_n)
content_recs = pd.DataFrame()
for song_title in song_titles:
content_recs = pd.concat([content_recs, content_based_recommend(song_title, top_n)], ignore_index=True)
hybrid_recs = pd.concat([collab_recs, content_recs]).drop_duplicates().sample(frac=1).reset_index(drop=True)
return hybrid_recs.head(top_n)
# Sidebar and Main UI
with st.sidebar:
st.header("🎯 Customize Your Recommendations")
user_id = st.selectbox(
"Select User ID",
options=df['user'].unique(),
index=0
)
user_songs = df[df['user'] == user_id]['title'].unique()
song_title = st.multiselect(
"Select Songs You Like",
options=user_songs,
default=user_songs[:1] if len(user_songs) > 0 else None
)
top_n = st.slider("Number of Recommendations", min_value=1, max_value=10, value=5)
get_recs = st.button("Get Recommendations! 🎶")
if get_recs:
st.header("🎵 Your Recommendations")
recommendations = hybrid_recommendv2(user_id, song_title, top_n)
SPOTIFY_CLIENT_ID = os.getenv("SPOTIFY_CLIENT_ID", None)
SPOTIFY_CLIENT_SECRET = os.getenv("SPOTIFY_CLIENT_SECRET", None)
# Get Spotify token
spotify_token = get_spotify_token(SPOTIFY_CLIENT_ID, SPOTIFY_CLIENT_SECRET)
if recommendations.empty:
st.error("No recommendations found. Try selecting different songs or users.")
else:
st.balloons()
for idx, row in recommendations.iterrows():
youtube_link = f"https://www.youtube.com/results?search_query={row['title']}+{row['artist_name']}"
spotify_data = fetch_spotify_track(f"{row['title']} {row['artist_name']}", spotify_token)
spotify_link = spotify_data.get("spotify_link", "#")
thumbnail_url = spotify_data.get("thumbnail")
# st.markdown(f"""
# <div class="recommendation-card">
# <h3>{row['title']}</h3>
# <p><strong>Artist:</strong> {row['artist_name']}</p>
# <p><strong>Album:</strong> {row['release']}</p>
# <a href="{youtube_link}" target="_blank" class="youtube-link">
# Watch on YouTube
# </a>
# </div>
# """, unsafe_allow_html=True)
st.markdown(f"""
<div class="recommendation-card" style="display: flex; align-items: center; gap: 20px;">
{"<img src='" + thumbnail_url + "' alt='Song Thumbnail' style='width:150px; height:150px; border-radius:10px; object-fit: cover;'>" if thumbnail_url else ""}
<div>
<h3>{row['title']}</h3>
<p><strong>Artist:</strong> {row['artist_name']}</p>
<p><strong>Album:</strong> {row['release']}</p>
<a href="{youtube_link}" target="_blank" class="youtube-link">Watch on YouTube</a>
<a href="{spotify_link}" target="_blank" class="spotify-link">Play on Spotify</a>
</div>
</div>
""", unsafe_allow_html=True)
|