Spaces:
Runtime error
Runtime error
File size: 3,764 Bytes
0842de0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
summarization
==============================
T5 Summarisation Using Pytorch Lightning
Instructions
------------
1. Clone the repo.
1. Run `make dirs` to create the missing parts of the directory structure described below.
1. *Optional:* Run `make virtualenv` to create a python virtual environment. Skip if using conda or some other env manager.
1. Run `source env/bin/activate` to activate the virtualenv.
1. Run `make requirements` to install required python packages.
1. Put the raw data in `data/raw`.
1. To save the raw data to the DVC cache, run `dvc commit raw_data.dvc`
1. Edit the code files to your heart's desire.
1. Process your data, train and evaluate your model using `dvc repro eval.dvc` or `make reproduce`
1. When you're happy with the result, commit files (including .dvc files) to git.
Project Organization
------------
βββ LICENSE
βββ Makefile <- Makefile with commands like `make dirs` or `make clean`
βββ README.md <- The top-level README for developers using this project.
βββ data
βΒ Β βββ processed <- The final, canonical data sets for modeling.
βΒ Β βββ raw <- The original, immutable data dump.
β
βββ eval.dvc <- The end of the data pipeline - evaluates the trained model on the test dataset.
β
βββ models <- Trained and serialized models, model predictions, or model summaries
β
βββ notebooks <- Jupyter notebooks. Naming convention is a number (for ordering),
β the creator's initials, and a short `-` delimited description, e.g.
β `1.0-jqp-initial-data-exploration`.
β
βββ process_data.dvc <- Process the raw data and prepare it for training.
βββ raw_data.dvc <- Keeps the raw data versioned.
β
βββ references <- Data dictionaries, manuals, and all other explanatory materials.
β
βββ reports <- Generated analysis as HTML, PDF, LaTeX, etc.
βΒ Β βββ figures <- Generated graphics and figures to be used in reporting
βΒ Β βββ metrics.txt <- Relevant metrics after evaluating the model.
βΒ Β βββ training_metrics.txt <- Relevant metrics from training the model.
β
βββ requirements.txt <- The requirements file for reproducing the analysis environment, e.g.
β generated with `pip freeze > requirements.txt`
β
βββ setup.py <- makes project pip installable (pip install -e .) so src can be imported
βββ src <- Source code for use in this project.
βΒ Β βββ __init__.py <- Makes src a Python module
β β
βΒ Β βββ data <- Scripts to download or generate data
βΒ Β βΒ Β βββ make_dataset.py
β β
βΒ Β βββ models <- Scripts to train models and then use trained models to make
β β β predictions
βΒ Β βΒ Β βββ predict_model.py
βΒ Β βΒ Β βββ train_model.py
β β
βΒ Β βββ visualization <- Scripts to create exploratory and results oriented visualizations
βΒ Β βββ visualize.py
β
βββ tox.ini <- tox file with settings for running tox; see tox.testrun.org
βββ train.dvc <- Traing a model on the processed data.
--------
<p><small>Project based on the <a target="_blank" href="https://drivendata.github.io/cookiecutter-data-science/">cookiecutter data science project template</a>. #cookiecutterdatascience</small></p>
|