Spaces:
Runtime error
Runtime error
File size: 3,977 Bytes
1c82f95 3c44515 7512014 1c82f95 3341ae8 1c82f95 f0f7dee 0842de0 1c8596f f871a4a a6aadaa 2f1ac21 67b67ae 524a321 cbfbfd6 711de5c cf08949 a36ddef 0842de0 90610ad 0842de0 b8c450c 0842de0 7958ed1 0842de0 7958ed1 0842de0 7958ed1 0842de0 7958ed1 0842de0 7958ed1 0842de0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
---
title: T5S
emoji: π―
colorFrom: yellow
colorTo: red
sdk: streamlit
app_file: src/visualization/visualize.py
pinned: false
---
<h1 align="center">t5s</h1>
T5 Summarisation Using Pytorch Lightning
[](https://pypi.org/project/5ts/)
[](https://pepy.tech/project/t5s)
[](https://github.com/psf/black)
[](https://huggingface.co/spaces/gagan3012/summarization)
[](https://colab.research.google.com/github/gagan3012/summarization/blob/master/notebooks/t5s.ipynb)
## Usage
To use and run the DVC pipeline install the `t5s` package
```shell script
pip install t5s
```
Instructions
------------
1. Clone the repo.
1. Edit the `params.yml` to change the parameters to train the model.
1. Run `make dirs` to create the missing parts of the directory structure described below.
1. *Optional:* Run `make virtualenv` to create a python virtual environment. Skip if using conda or some other env manager.
1. Run `source env/bin/activate` to activate the virtualenv.
1. Run `make requirements` to install required python packages.
1. Process your data, train and evaluate your model using `make run`
1. When you're happy with the result, commit files (including .dvc files) to git.
Project Organization
------------
βββ LICENSE
βββ Makefile <- Makefile with commands like `make dirs` or `make clean`
βββ README.md <- The top-level README for developers using this project.
βββ data
βΒ Β βββ processed <- The final, canonical data sets for modeling.
βΒ Β βββ raw <- The original, immutable data dump.
β
βββ models <- Trained and serialized models, model predictions, or model summaries
β
βββ notebooks <- Jupyter notebooks. Naming convention is a number (for ordering),
β the creator's initials, and a short `-` delimited description, e.g.
β `1.0-jqp-initial-data-exploration`.
βββ references <- Data dictionaries, manuals, and all other explanatory materials.
β
βββ reports <- Generated analysis as HTML, PDF, LaTeX, etc.
βΒ Β βββ metrics.txt <- Relevant metrics after evaluating the model.
βΒ Β βββ training_metrics.txt <- Relevant metrics from training the model.
β
βββ requirements.txt <- The requirements file for reproducing the analysis environment
β
βββ setup.py <- makes project pip installable (pip install -e .) so src can be imported
βββ src <- Source code for use in this project.
βΒ Β βββ __init__.py <- Makes src a Python module
β β
βΒ Β βββ data <- Scripts to download or generate data
βΒ Β βΒ Β βββ make_dataset.py
βΒ Β βΒ Β βββ process_data.py
β β
βΒ Β βββ models <- Scripts to train models
βΒ Β βΒ Β βββ predict_model.py
βΒ Β βΒ Β βββ train_model.py
βΒ Β βΒ Β βββ evaluate_model.py
βΒ Β βΒ Β βββ model.py
β β
βΒ Β βββ visualization <- Scripts to create exploratory and results oriented visualizations
βΒ Β βββ visualize.py
β
βββ tox.ini <- tox file with settings for running tox; see tox.testrun.org
βββ data.dvc <- Traing a model on the processed data.
--------
|