File size: 3,028 Bytes
0842de0
 
 
 
 
 
 
 
90610ad
0842de0
 
 
 
b8c450c
0842de0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7958ed1
0842de0
 
 
 
 
 
 
7958ed1
0842de0
7958ed1
0842de0
 
7958ed1
 
0842de0
 
 
 
 
7958ed1
0842de0
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
summarization
==============================

T5 Summarisation Using Pytorch Lightning

Instructions
------------
1. Clone the repo.
1. Edit the `params.yml` to change the parameters to train the model.
1. Run `make dirs` to create the missing parts of the directory structure described below. 
1. *Optional:* Run `make virtualenv` to create a python virtual environment. Skip if using conda or some other env manager.
    1. Run `source env/bin/activate` to activate the virtualenv. 
1. Run `make requirements` to install required python packages.
1. Process your data, train and evaluate your model using `make run`
1. When you're happy with the result, commit files (including .dvc files) to git.
 
Project Organization
------------

    β”œβ”€β”€ LICENSE
    β”œβ”€β”€ Makefile           <- Makefile with commands like `make dirs` or `make clean`
    β”œβ”€β”€ README.md          <- The top-level README for developers using this project.
    β”œβ”€β”€ data
    β”‚Β Β  β”œβ”€β”€ processed      <- The final, canonical data sets for modeling.
    β”‚Β Β  └── raw            <- The original, immutable data dump.
    β”‚
    β”œβ”€β”€ models             <- Trained and serialized models, model predictions, or model summaries
    β”‚
    β”œβ”€β”€ notebooks          <- Jupyter notebooks. Naming convention is a number (for ordering),
    β”‚                         the creator's initials, and a short `-` delimited description, e.g.
    β”‚                         `1.0-jqp-initial-data-exploration`.
    β”œβ”€β”€ references         <- Data dictionaries, manuals, and all other explanatory materials.
    β”‚
    β”œβ”€β”€ reports            <- Generated analysis as HTML, PDF, LaTeX, etc.
    β”‚Β Β  └── metrics.txt    <- Relevant metrics after evaluating the model.
    β”‚Β Β  └── training_metrics.txt    <- Relevant metrics from training the model.
    β”‚
    β”œβ”€β”€ requirements.txt   <- The requirements file for reproducing the analysis environment
    β”‚
    β”œβ”€β”€ setup.py           <- makes project pip installable (pip install -e .) so src can be imported
    β”œβ”€β”€ src                <- Source code for use in this project.
    β”‚Β Β  β”œβ”€β”€ __init__.py    <- Makes src a Python module
    β”‚   β”‚
    β”‚Β Β  β”œβ”€β”€ data           <- Scripts to download or generate data
    β”‚Β Β  β”‚Β Β  └── make_dataset.py
    β”‚Β Β  β”‚Β Β  └── process_data.py
    β”‚   β”‚
    β”‚Β Β  β”œβ”€β”€ models         <- Scripts to train models 
    β”‚Β Β  β”‚Β Β  β”œβ”€β”€ predict_model.py
    β”‚Β Β  β”‚Β Β  └── train_model.py
    β”‚Β Β  β”‚Β Β  └── evaluate_model.py
    β”‚Β Β  β”‚Β Β  └── model.py
    β”‚   β”‚
    β”‚Β Β  └── visualization  <- Scripts to create exploratory and results oriented visualizations
    β”‚Β Β      └── visualize.py
    β”‚
    β”œβ”€β”€ tox.ini            <- tox file with settings for running tox; see tox.testrun.org
    └── data.dvc          <- Traing a model on the processed data.


--------