gagan3012 commited on
Commit
01dffc6
·
1 Parent(s): 51d1d68
setup.py CHANGED
@@ -12,7 +12,7 @@ with open('requirements.txt') as f:
12
  setup(
13
  name='t5s',
14
  packages=find_packages(include=['t5s*']),
15
- version='2.0.3',
16
  description="T5 Summarisation Using Pytorch Lightning",
17
  license='MIT License',
18
  classifiers=[
 
12
  setup(
13
  name='t5s',
14
  packages=find_packages(include=['t5s*']),
15
+ version='2.0.4',
16
  description="T5 Summarisation Using Pytorch Lightning",
17
  license='MIT License',
18
  classifiers=[
src/data/process_data.py CHANGED
@@ -9,7 +9,7 @@ def process_data(split="train"):
9
 
10
  df = pd.read_csv("data/raw/{}.csv".format(split))
11
  df.columns = ["Unnamed: 0", "input_text", "output_text"]
12
- df = df.sample(frac=float(params["split"]), replace=True, random_state=1)
13
  df.to_csv("data/processed/{}.csv".format(split))
14
 
15
 
 
9
 
10
  df = pd.read_csv("data/raw/{}.csv".format(split))
11
  df.columns = ["Unnamed: 0", "input_text", "output_text"]
12
+ df = df.sample(frac=params["split"], replace=True, random_state=1)
13
  df.to_csv("data/processed/{}.csv".format(split))
14
 
15
 
src/models/predict_model.py CHANGED
@@ -11,6 +11,6 @@ def predict_model(text: str):
11
  params = yaml.safe_load(f)
12
 
13
  model = Summarization()
14
- model.load_model(model_type=params["model_type"], model_dir=params["model_dir"])
15
  pre_summary = model.predict(text)
16
  return pre_summary
 
11
  params = yaml.safe_load(f)
12
 
13
  model = Summarization()
14
+ model.load_model(model_type=params["model_type"], model_dir="gagan3012/summarsiation")
15
  pre_summary = model.predict(text)
16
  return pre_summary
t5s/cli.py CHANGED
@@ -22,31 +22,32 @@ parser_start.add_argument(
22
  "-d",
23
  "--dataset",
24
  default="cnn_dailymail",
25
- help="Enter the name of the dataset to be used",
26
  )
27
 
28
- parser_start.add_argument("-s", "--split", default=0.001, help="Enter the split required")
29
 
30
  parser_start.add_argument(
31
  "-n", "--name", default="summarsiation", help="Enter the name of the model"
32
  )
33
  parser_start.add_argument(
34
- "-mt", "--model_type", default="t5", help="Enter the model type"
35
  )
36
  parser_start.add_argument(
37
  "-m",
38
  "--model_name",
39
  default="t5-base",
40
  help="Enter the model to be used eg t5-base",
 
41
  )
42
  parser_start.add_argument(
43
- "-e", "--epochs", default=5, help="Enter the number of epochs"
44
  )
45
  parser_start.add_argument(
46
- "-lr", "--learning-rate", default=0.0001, help="Enter the number of epochs"
47
  )
48
  parser_start.add_argument(
49
- "-b", "--batch-size", default=2, help="Enter the number of batches"
50
  )
51
 
52
  parser_dirs = command_subparser.add_parser(
 
22
  "-d",
23
  "--dataset",
24
  default="cnn_dailymail",
25
+ help="Enter the name of the dataset to be used",type=str
26
  )
27
 
28
+ parser_start.add_argument("-s", "--split", default=0.001, help="Enter the split required",type=float)
29
 
30
  parser_start.add_argument(
31
  "-n", "--name", default="summarsiation", help="Enter the name of the model"
32
  )
33
  parser_start.add_argument(
34
+ "-mt", "--model_type", default="t5", help="Enter the model type",type=str
35
  )
36
  parser_start.add_argument(
37
  "-m",
38
  "--model_name",
39
  default="t5-base",
40
  help="Enter the model to be used eg t5-base",
41
+ type=str
42
  )
43
  parser_start.add_argument(
44
+ "-e", "--epochs", default=5, help="Enter the number of epochs", type=int
45
  )
46
  parser_start.add_argument(
47
+ "-lr", "--learning-rate", default=0.0001, help="Enter the number of epochs", type=float
48
  )
49
  parser_start.add_argument(
50
+ "-b", "--batch-size", default=2, help="Enter the number of batches", type=int
51
  )
52
 
53
  parser_dirs = command_subparser.add_parser(