Spaces:
Runtime error
Runtime error
PR conflict resolution plus making HF upload more generic
Browse files- .github/workflows/sync_to_hub.yml +20 -0
- .gitignore +2 -1
- README.md +10 -0
- dvc.lock +21 -12
- model_params.yml +0 -3
- reports/evaluation_metrics.csv +36 -36
- reports/training_metrics.csv +8 -8
- src/__init__.py +0 -0
- src/models/__init__.py +0 -0
- src/models/hf_upload.py +10 -11
.github/workflows/sync_to_hub.yml
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: Sync to Hugging Face hub
|
2 |
+
|
3 |
+
on:
|
4 |
+
push:
|
5 |
+
branches: [master]
|
6 |
+
|
7 |
+
# to run this workflow manually from the Actions tab
|
8 |
+
workflow_dispatch:
|
9 |
+
|
10 |
+
jobs:
|
11 |
+
sync-to-hub:
|
12 |
+
runs-on: ubuntu-latest
|
13 |
+
steps:
|
14 |
+
- uses: actions/checkout@v2
|
15 |
+
with:
|
16 |
+
fetch-depth: 0
|
17 |
+
- name: Push to hub
|
18 |
+
env:
|
19 |
+
HF_TOKEN: ${{ secrets.HF_TOKEN }}
|
20 |
+
run: git push --force https://gagan3012:[email protected]/spaces/gagan3012/t5-summarisation
|
.gitignore
CHANGED
@@ -97,4 +97,5 @@ summarization-dagshub/
|
|
97 |
/models
|
98 |
default/
|
99 |
artifacts/
|
100 |
-
mlruns/
|
|
|
|
97 |
/models
|
98 |
default/
|
99 |
artifacts/
|
100 |
+
mlruns/
|
101 |
+
hf_model/
|
README.md
CHANGED
@@ -1,3 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
summarization
|
2 |
==============================
|
3 |
|
|
|
1 |
+
---
|
2 |
+
title: T5-Summarisation
|
3 |
+
emoji: ✌
|
4 |
+
colorFrom: yellow
|
5 |
+
colorTo: red
|
6 |
+
sdk: streamlit
|
7 |
+
app_file: app.py
|
8 |
+
pinned: false
|
9 |
+
---
|
10 |
+
|
11 |
summarization
|
12 |
==============================
|
13 |
|
dvc.lock
CHANGED
@@ -10,8 +10,8 @@ stages:
|
|
10 |
md5: 6069153a075b00dfb6d9e0843dd2da89
|
11 |
size: 52739
|
12 |
- path: model_params.yml
|
13 |
-
md5:
|
14 |
-
size:
|
15 |
- path: src/models/train_model.py
|
16 |
md5: f7d1121426c3d5530c2b9697cb7ac74a
|
17 |
size: 951
|
@@ -21,7 +21,7 @@ stages:
|
|
21 |
size: 243476333
|
22 |
nfiles: 5
|
23 |
- path: reports/training_metrics.csv
|
24 |
-
md5:
|
25 |
size: 320
|
26 |
eval:
|
27 |
cmd: python src/models/evaluate_model.py
|
@@ -30,8 +30,8 @@ stages:
|
|
30 |
md5: 3eec94ac211c76363a3d968663b82d02
|
31 |
size: 39574
|
32 |
- path: model_params.yml
|
33 |
-
md5:
|
34 |
-
size:
|
35 |
- path: models
|
36 |
md5: fc37870a93db61b94af9f0847577f09b.dir
|
37 |
size: 243476333
|
@@ -41,7 +41,7 @@ stages:
|
|
41 |
size: 705
|
42 |
outs:
|
43 |
- path: reports/evaluation_metrics.csv
|
44 |
-
md5:
|
45 |
size: 2122
|
46 |
process_data:
|
47 |
cmd: python src/data/process_data.py
|
@@ -88,9 +88,18 @@ stages:
|
|
88 |
size: 243476333
|
89 |
nfiles: 5
|
90 |
- path: src/visualization/visualize.py
|
91 |
-
md5:
|
92 |
-
size:
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
md5: 6069153a075b00dfb6d9e0843dd2da89
|
11 |
size: 52739
|
12 |
- path: model_params.yml
|
13 |
+
md5: 1bf2edf25e851cc9cd3be75fbd9905a3
|
14 |
+
size: 177
|
15 |
- path: src/models/train_model.py
|
16 |
md5: f7d1121426c3d5530c2b9697cb7ac74a
|
17 |
size: 951
|
|
|
21 |
size: 243476333
|
22 |
nfiles: 5
|
23 |
- path: reports/training_metrics.csv
|
24 |
+
md5: 3b309def91a32e521acd23b163742522
|
25 |
size: 320
|
26 |
eval:
|
27 |
cmd: python src/models/evaluate_model.py
|
|
|
30 |
md5: 3eec94ac211c76363a3d968663b82d02
|
31 |
size: 39574
|
32 |
- path: model_params.yml
|
33 |
+
md5: 1bf2edf25e851cc9cd3be75fbd9905a3
|
34 |
+
size: 177
|
35 |
- path: models
|
36 |
md5: fc37870a93db61b94af9f0847577f09b.dir
|
37 |
size: 243476333
|
|
|
41 |
size: 705
|
42 |
outs:
|
43 |
- path: reports/evaluation_metrics.csv
|
44 |
+
md5: eaa3bf017026aa1be31560f308fff78e
|
45 |
size: 2122
|
46 |
process_data:
|
47 |
cmd: python src/data/process_data.py
|
|
|
88 |
size: 243476333
|
89 |
nfiles: 5
|
90 |
- path: src/visualization/visualize.py
|
91 |
+
md5: 4226e4148abb5ac186c0ab8c1d87b228
|
92 |
+
size: 671
|
93 |
+
push_to_hf_hub:
|
94 |
+
cmd: python src/models/hf_upload.py
|
95 |
+
deps:
|
96 |
+
- path: model_params.yml
|
97 |
+
md5: 1bf2edf25e851cc9cd3be75fbd9905a3
|
98 |
+
size: 177
|
99 |
+
- path: models
|
100 |
+
md5: fc37870a93db61b94af9f0847577f09b.dir
|
101 |
+
size: 243476333
|
102 |
+
nfiles: 5
|
103 |
+
- path: src/models/hf_upload.py
|
104 |
+
md5: a953816a3eb7bef702313544103a1c11
|
105 |
+
size: 1290
|
model_params.yml
CHANGED
@@ -9,6 +9,3 @@ num_workers: 2
|
|
9 |
model_dir: models
|
10 |
metric: rouge
|
11 |
source_dir: src
|
12 |
-
visualise: True
|
13 |
-
hf_username: gagan3012
|
14 |
-
upload_to_hf: False
|
|
|
9 |
model_dir: models
|
10 |
metric: rouge
|
11 |
source_dir: src
|
|
|
|
|
|
reports/evaluation_metrics.csv
CHANGED
@@ -1,37 +1,37 @@
|
|
1 |
Name,Value,Timestamp,Step
|
2 |
-
"Rouge_1 Low Precision",0.23786550570641482,
|
3 |
-
"Rouge_1 Low recall",0.23355396379384713,
|
4 |
-
"Rouge_1 Low F1",0.23602599457077003,
|
5 |
-
"Rouge_1 Mid Precision",0.3569471852499436,
|
6 |
-
"Rouge_1 Mid recall",0.31915939075819916,
|
7 |
-
"Rouge_1 Mid F1",0.3317618573023773,
|
8 |
-
"Rouge_1 High Precision",0.4726861301480842,
|
9 |
-
"Rouge_1 High recall",0.4019654200001146,
|
10 |
-
"Rouge_1 High F1",0.4298956952594035,
|
11 |
-
"Rouge_2 Low Precision",0.06184772400193972,
|
12 |
-
"Rouge_2 Low recall",0.05626972412346313,
|
13 |
-
"Rouge_2 Low F1",0.058680298802341754,
|
14 |
-
"Rouge_2 Mid Precision",0.1367034298993256,
|
15 |
-
"Rouge_2 Mid recall",0.11953160646342464,
|
16 |
-
"Rouge_2 Mid F1",0.12485064123505887,
|
17 |
-
"Rouge_2 High Precision",0.22739029631016827,
|
18 |
-
"Rouge_2 High recall",0.18851628169809986,
|
19 |
-
"Rouge_2 High F1",0.20306657551189072,
|
20 |
-
"Rouge_L Low Precision",0.18248956154159507,
|
21 |
-
"Rouge_L Low recall",0.18048774357814204,
|
22 |
-
"Rouge_L Low F1",0.18151380309623336,
|
23 |
-
"Rouge_L Mid Precision",0.2614974838710314,
|
24 |
-
"Rouge_L Mid recall",0.24286688705755238,
|
25 |
-
"Rouge_L Mid F1",0.24674586991996245,
|
26 |
-
"Rouge_L High Precision",0.3574471638807763,
|
27 |
-
"Rouge_L High recall",0.30836083808542225,
|
28 |
-
"Rouge_L High F1",0.32385446385474176,
|
29 |
-
"rougeLsum Low Precision",0.21468633089019287,
|
30 |
-
"rougeLsum Low recall",0.2057771050364415,
|
31 |
-
"rougeLsum Low F1",0.21170611912426093,
|
32 |
-
"rougeLsum Mid Precision",0.3060593850789648,
|
33 |
-
"rougeLsum Mid recall",0.27733553744690076,
|
34 |
-
"rougeLsum Mid F1",0.28530501988436374,
|
35 |
-
"rougeLsum High Precision",0.4094614601758424,
|
36 |
-
"rougeLsum High recall",0.34640369291505535,
|
37 |
-
"rougeLsum High F1",0.36454440079714096,
|
|
|
1 |
Name,Value,Timestamp,Step
|
2 |
+
"Rouge_1 Low Precision",0.23786550570641482,1628587253223,1
|
3 |
+
"Rouge_1 Low recall",0.23355396379384713,1628587253223,1
|
4 |
+
"Rouge_1 Low F1",0.23602599457077003,1628587253223,1
|
5 |
+
"Rouge_1 Mid Precision",0.3569471852499436,1628587253223,1
|
6 |
+
"Rouge_1 Mid recall",0.31915939075819916,1628587253223,1
|
7 |
+
"Rouge_1 Mid F1",0.3317618573023773,1628587253223,1
|
8 |
+
"Rouge_1 High Precision",0.4726861301480842,1628587253223,1
|
9 |
+
"Rouge_1 High recall",0.4019654200001146,1628587253223,1
|
10 |
+
"Rouge_1 High F1",0.4298956952594035,1628587253223,1
|
11 |
+
"Rouge_2 Low Precision",0.06184772400193972,1628587253223,1
|
12 |
+
"Rouge_2 Low recall",0.05626972412346313,1628587253223,1
|
13 |
+
"Rouge_2 Low F1",0.058680298802341754,1628587253223,1
|
14 |
+
"Rouge_2 Mid Precision",0.1367034298993256,1628587253223,1
|
15 |
+
"Rouge_2 Mid recall",0.11953160646342464,1628587253223,1
|
16 |
+
"Rouge_2 Mid F1",0.12485064123505887,1628587253223,1
|
17 |
+
"Rouge_2 High Precision",0.22739029631016827,1628587253223,1
|
18 |
+
"Rouge_2 High recall",0.18851628169809986,1628587253223,1
|
19 |
+
"Rouge_2 High F1",0.20306657551189072,1628587253223,1
|
20 |
+
"Rouge_L Low Precision",0.18248956154159507,1628587253223,1
|
21 |
+
"Rouge_L Low recall",0.18048774357814204,1628587253223,1
|
22 |
+
"Rouge_L Low F1",0.18151380309623336,1628587253223,1
|
23 |
+
"Rouge_L Mid Precision",0.2614974838710314,1628587253223,1
|
24 |
+
"Rouge_L Mid recall",0.24286688705755238,1628587253223,1
|
25 |
+
"Rouge_L Mid F1",0.24674586991996245,1628587253223,1
|
26 |
+
"Rouge_L High Precision",0.3574471638807763,1628587253223,1
|
27 |
+
"Rouge_L High recall",0.30836083808542225,1628587253223,1
|
28 |
+
"Rouge_L High F1",0.32385446385474176,1628587253223,1
|
29 |
+
"rougeLsum Low Precision",0.21468633089019287,1628587253223,1
|
30 |
+
"rougeLsum Low recall",0.2057771050364415,1628587253223,1
|
31 |
+
"rougeLsum Low F1",0.21170611912426093,1628587253223,1
|
32 |
+
"rougeLsum Mid Precision",0.3060593850789648,1628587253223,1
|
33 |
+
"rougeLsum Mid recall",0.27733553744690076,1628587253223,1
|
34 |
+
"rougeLsum Mid F1",0.28530501988436374,1628587253223,1
|
35 |
+
"rougeLsum High Precision",0.4094614601758424,1628587253223,1
|
36 |
+
"rougeLsum High recall",0.34640369291505535,1628587253223,1
|
37 |
+
"rougeLsum High F1",0.36454440079714096,1628587253223,1
|
reports/training_metrics.csv
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
Name,Value,Timestamp,Step
|
2 |
-
"val_loss",2.615034580230713,
|
3 |
-
"epoch",0,
|
4 |
-
"val_loss",2.6141018867492676,
|
5 |
-
"epoch",1,
|
6 |
-
"val_loss",2.6132164001464844,
|
7 |
-
"epoch",2,
|
8 |
-
"val_loss",2.612450361251831,
|
9 |
-
"epoch",3,
|
|
|
1 |
Name,Value,Timestamp,Step
|
2 |
+
"val_loss",2.615034580230713,1628591864766,0
|
3 |
+
"epoch",0,1628591864766,0
|
4 |
+
"val_loss",2.6141018867492676,1628591893945,1
|
5 |
+
"epoch",1,1628591893945,1
|
6 |
+
"val_loss",2.6132164001464844,1628591923101,2
|
7 |
+
"epoch",2,1628591923101,2
|
8 |
+
"val_loss",2.612450361251831,1628591951319,3
|
9 |
+
"epoch",3,1628591951319,3
|
src/__init__.py
ADDED
File without changes
|
src/models/__init__.py
ADDED
File without changes
|
src/models/hf_upload.py
CHANGED
@@ -7,35 +7,34 @@ from model import Summarization
|
|
7 |
from huggingface_hub import HfApi, Repository
|
8 |
|
9 |
|
10 |
-
def upload(
|
11 |
hf_username = input("Enter your HuggingFace username:")
|
12 |
-
|
13 |
-
|
14 |
-
shutil.rmtree("./models")
|
15 |
-
token = HfApi().login(username=hf_username, password=hf_password)
|
16 |
-
del hf_password
|
17 |
-
model_url = HfApi().create_repo(token=token, name=model_name, exist_ok=True)
|
18 |
model_repo = Repository(
|
19 |
-
"./
|
20 |
clone_from=model_url,
|
21 |
-
use_auth_token=
|
22 |
git_email=f"{hf_username}@users.noreply.huggingface.co",
|
23 |
git_user=hf_username,
|
24 |
)
|
25 |
|
|
|
26 |
readme_txt = f"""
|
27 |
---
|
28 |
Summarisation model {model_name}
|
29 |
""".strip()
|
30 |
|
31 |
(Path(model_repo.local_dir) / "README.md").write_text(readme_txt)
|
32 |
-
upload_model.save_model()
|
33 |
commit_url = model_repo.push_to_hub()
|
34 |
|
35 |
print("Check out your model at:")
|
36 |
print(commit_url)
|
37 |
print(f"https://huggingface.co/{hf_username}/{model_name}")
|
38 |
|
|
|
|
|
|
|
39 |
|
40 |
if __name__ == "__main__":
|
41 |
with open("model_params.yml") as f:
|
@@ -44,4 +43,4 @@ if __name__ == "__main__":
|
|
44 |
model = Summarization()
|
45 |
model.load_model(model_dir="./models")
|
46 |
|
47 |
-
upload(
|
|
|
7 |
from huggingface_hub import HfApi, Repository
|
8 |
|
9 |
|
10 |
+
def upload(model_to_upload, model_name):
|
11 |
hf_username = input("Enter your HuggingFace username:")
|
12 |
+
hf_token = getpass("Enter your HuggingFace token:")
|
13 |
+
model_url = HfApi().create_repo(token=hf_token, name=model_name, exist_ok=True)
|
|
|
|
|
|
|
|
|
14 |
model_repo = Repository(
|
15 |
+
"./hf_model",
|
16 |
clone_from=model_url,
|
17 |
+
use_auth_token=hf_token,
|
18 |
git_email=f"{hf_username}@users.noreply.huggingface.co",
|
19 |
git_user=hf_username,
|
20 |
)
|
21 |
|
22 |
+
del hf_token
|
23 |
readme_txt = f"""
|
24 |
---
|
25 |
Summarisation model {model_name}
|
26 |
""".strip()
|
27 |
|
28 |
(Path(model_repo.local_dir) / "README.md").write_text(readme_txt)
|
|
|
29 |
commit_url = model_repo.push_to_hub()
|
30 |
|
31 |
print("Check out your model at:")
|
32 |
print(commit_url)
|
33 |
print(f"https://huggingface.co/{hf_username}/{model_name}")
|
34 |
|
35 |
+
if Path("./hf_model").exists():
|
36 |
+
shutil.rmtree("./hf_model")
|
37 |
+
|
38 |
|
39 |
if __name__ == "__main__":
|
40 |
with open("model_params.yml") as f:
|
|
|
43 |
model = Summarization()
|
44 |
model.load_model(model_dir="./models")
|
45 |
|
46 |
+
upload(model_to_upload=model, model_name=params["name"])
|