gagan3012 commited on
Commit
9ba1f65
·
1 Parent(s): ae4ef78

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +16 -15
README.md CHANGED
@@ -23,66 +23,67 @@ T5 Summarisation Using Pytorch Lightning
23
  To use and run the DVC pipeline install the `t5s` package
24
 
25
  ```shell script
 
26
  pip install t5s
 
27
  ```
28
 
29
  Firstly we need to clone the repo containing the code so we can do that using:
30
 
31
  ```shell script
 
32
  t5s clone
 
33
  ```
34
 
35
  We would then have to create the required directories to run the pipeline
36
 
37
  ```shell script
 
38
  t5s dirs
 
39
  ```
40
 
41
  Then we need to pull the models from DVC
42
 
43
  ```shell script
 
44
  t5s pull
 
45
  ```
46
 
47
  Now to run the training pipeline we can run:
48
 
49
  ```shell script
 
50
  t5s run
 
51
  ```
52
 
53
  Finally to push the model to DVC
54
 
55
  ```shell script
 
56
  t5s push
 
57
  ```
58
 
59
  To push this model to HuggingFace Hub for inference you can run:
60
 
61
  ```shell script
 
62
  t5s push_to_hf_hub
 
63
  ```
64
 
65
  Next if we would like to test the model and visualise the results we can run:
66
  ```shell script
 
67
  t5s visualize
 
68
  ```
69
  And this would create a streamlit app for testing
70
 
71
-
72
-
73
-
74
-
75
-
76
- Instructions
77
- ------------
78
- 1. Clone the repo.
79
- 1. Edit the `params.yml` to change the parameters to train the model.
80
- 1. Run `make dirs` to create the missing parts of the directory structure described below.
81
- 1. *Optional:* Run `make virtualenv` to create a python virtual environment. Skip if using conda or some other env manager.
82
- 1. Run `source env/bin/activate` to activate the virtualenv.
83
- 1. Run `make requirements` to install required python packages.
84
- 1. Process your data, train and evaluate your model using `make run`
85
- 1. When you're happy with the result, commit files (including .dvc files) to git.
86
 
87
  Project Organization
88
  ------------
 
23
  To use and run the DVC pipeline install the `t5s` package
24
 
25
  ```shell script
26
+
27
  pip install t5s
28
+
29
  ```
30
 
31
  Firstly we need to clone the repo containing the code so we can do that using:
32
 
33
  ```shell script
34
+
35
  t5s clone
36
+
37
  ```
38
 
39
  We would then have to create the required directories to run the pipeline
40
 
41
  ```shell script
42
+
43
  t5s dirs
44
+
45
  ```
46
 
47
  Then we need to pull the models from DVC
48
 
49
  ```shell script
50
+
51
  t5s pull
52
+
53
  ```
54
 
55
  Now to run the training pipeline we can run:
56
 
57
  ```shell script
58
+
59
  t5s run
60
+
61
  ```
62
 
63
  Finally to push the model to DVC
64
 
65
  ```shell script
66
+
67
  t5s push
68
+
69
  ```
70
 
71
  To push this model to HuggingFace Hub for inference you can run:
72
 
73
  ```shell script
74
+
75
  t5s push_to_hf_hub
76
+
77
  ```
78
 
79
  Next if we would like to test the model and visualise the results we can run:
80
  ```shell script
81
+
82
  t5s visualize
83
+
84
  ```
85
  And this would create a streamlit app for testing
86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87
 
88
  Project Organization
89
  ------------