Spaces:
Runtime error
Runtime error
Gagan Bhatia
commited on
Commit
·
b9412d1
1
Parent(s):
9f217b5
Updates
Browse files- src/models/model.py +435 -0
- src/models/train_model.py +0 -441
src/models/model.py
ADDED
@@ -0,0 +1,435 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
import pandas as pd
|
5 |
+
from datasets import load_metric
|
6 |
+
from transformers import (
|
7 |
+
AdamW,
|
8 |
+
T5ForConditionalGeneration,
|
9 |
+
T5TokenizerFast as T5Tokenizer,
|
10 |
+
)
|
11 |
+
from torch.utils.data import Dataset, DataLoader
|
12 |
+
import pytorch_lightning as pl
|
13 |
+
from pytorch_lightning.loggers import MLFlowLogger
|
14 |
+
from pytorch_lightning import Trainer
|
15 |
+
from pytorch_lightning.callbacks.early_stopping import EarlyStopping
|
16 |
+
from pytorch_lightning import LightningDataModule
|
17 |
+
from pytorch_lightning import LightningModule
|
18 |
+
|
19 |
+
torch.cuda.empty_cache()
|
20 |
+
pl.seed_everything(42)
|
21 |
+
|
22 |
+
|
23 |
+
class DataModule(Dataset):
|
24 |
+
"""
|
25 |
+
Data Module for pytorch
|
26 |
+
"""
|
27 |
+
|
28 |
+
def __init__(
|
29 |
+
self,
|
30 |
+
data: pd.DataFrame,
|
31 |
+
tokenizer: T5Tokenizer,
|
32 |
+
source_max_token_len: int = 512,
|
33 |
+
target_max_token_len: int = 512,
|
34 |
+
):
|
35 |
+
"""
|
36 |
+
:param data:
|
37 |
+
:param tokenizer:
|
38 |
+
:param source_max_token_len:
|
39 |
+
:param target_max_token_len:
|
40 |
+
"""
|
41 |
+
self.data = data
|
42 |
+
self.target_max_token_len = target_max_token_len
|
43 |
+
self.source_max_token_len = source_max_token_len
|
44 |
+
self.tokenizer = tokenizer
|
45 |
+
|
46 |
+
def __len__(self):
|
47 |
+
return len(self.data)
|
48 |
+
|
49 |
+
def __getitem__(self, index: int):
|
50 |
+
data_row = self.data.iloc[index]
|
51 |
+
|
52 |
+
input_encoding = self.tokenizer(
|
53 |
+
data_row["input_text"],
|
54 |
+
max_length=self.source_max_token_len,
|
55 |
+
padding="max_length",
|
56 |
+
truncation=True,
|
57 |
+
return_attention_mask=True,
|
58 |
+
add_special_tokens=True,
|
59 |
+
return_tensors="pt",
|
60 |
+
)
|
61 |
+
|
62 |
+
output_encoding = self.tokenizer(
|
63 |
+
data_row["output_text"],
|
64 |
+
max_length=self.target_max_token_len,
|
65 |
+
padding="max_length",
|
66 |
+
truncation=True,
|
67 |
+
return_attention_mask=True,
|
68 |
+
add_special_tokens=True,
|
69 |
+
return_tensors="pt",
|
70 |
+
)
|
71 |
+
|
72 |
+
labels = output_encoding["input_ids"]
|
73 |
+
labels[
|
74 |
+
labels == 0
|
75 |
+
] = -100
|
76 |
+
|
77 |
+
return dict(
|
78 |
+
keywords=data_row["keywords"],
|
79 |
+
text=data_row["text"],
|
80 |
+
keywords_input_ids=input_encoding["input_ids"].flatten(),
|
81 |
+
keywords_attention_mask=input_encoding["attention_mask"].flatten(),
|
82 |
+
labels=labels.flatten(),
|
83 |
+
labels_attention_mask=output_encoding["attention_mask"].flatten(),
|
84 |
+
)
|
85 |
+
|
86 |
+
|
87 |
+
class PLDataModule(LightningDataModule):
|
88 |
+
def __init__(
|
89 |
+
self,
|
90 |
+
train_df: pd.DataFrame,
|
91 |
+
test_df: pd.DataFrame,
|
92 |
+
tokenizer: T5Tokenizer,
|
93 |
+
source_max_token_len: int = 512,
|
94 |
+
target_max_token_len: int = 512,
|
95 |
+
batch_size: int = 4,
|
96 |
+
split: float = 0.1
|
97 |
+
):
|
98 |
+
"""
|
99 |
+
:param data_df:
|
100 |
+
:param tokenizer:
|
101 |
+
:param source_max_token_len:
|
102 |
+
:param target_max_token_len:
|
103 |
+
:param batch_size:
|
104 |
+
:param split:
|
105 |
+
"""
|
106 |
+
super().__init__()
|
107 |
+
self.train_df = train_df
|
108 |
+
self.test_df = test_df
|
109 |
+
self.split = split
|
110 |
+
self.batch_size = batch_size
|
111 |
+
self.target_max_token_len = target_max_token_len
|
112 |
+
self.source_max_token_len = source_max_token_len
|
113 |
+
self.tokenizer = tokenizer
|
114 |
+
|
115 |
+
def setup(self, stage=None):
|
116 |
+
self.train_dataset = DataModule(
|
117 |
+
self.train_df,
|
118 |
+
self.tokenizer,
|
119 |
+
self.source_max_token_len,
|
120 |
+
self.target_max_token_len,
|
121 |
+
)
|
122 |
+
self.test_dataset = DataModule(
|
123 |
+
self.test_df,
|
124 |
+
self.tokenizer,
|
125 |
+
self.source_max_token_len,
|
126 |
+
self.target_max_token_len,
|
127 |
+
)
|
128 |
+
|
129 |
+
def train_dataloader(self):
|
130 |
+
""" training dataloader """
|
131 |
+
return DataLoader(
|
132 |
+
self.train_dataset, batch_size=self.batch_size, shuffle=True, num_workers=2
|
133 |
+
)
|
134 |
+
|
135 |
+
def test_dataloader(self):
|
136 |
+
""" test dataloader """
|
137 |
+
return DataLoader(
|
138 |
+
self.test_dataset, batch_size=self.batch_size, shuffle=False, num_workers=2
|
139 |
+
)
|
140 |
+
|
141 |
+
def val_dataloader(self):
|
142 |
+
""" validation dataloader """
|
143 |
+
return DataLoader(
|
144 |
+
self.test_dataset, batch_size=self.batch_size, shuffle=False, num_workers=2
|
145 |
+
)
|
146 |
+
|
147 |
+
|
148 |
+
class LightningModel(LightningModule):
|
149 |
+
""" PyTorch Lightning Model class"""
|
150 |
+
|
151 |
+
def __init__(self, tokenizer, model, output: str = "outputs"):
|
152 |
+
"""
|
153 |
+
initiates a PyTorch Lightning Model
|
154 |
+
Args:
|
155 |
+
tokenizer : T5 tokenizer
|
156 |
+
model : T5 model
|
157 |
+
output (str, optional): output directory to save model checkpoints. Defaults to "outputs".
|
158 |
+
"""
|
159 |
+
super().__init__()
|
160 |
+
self.model = model
|
161 |
+
self.tokenizer = tokenizer
|
162 |
+
self.output = output
|
163 |
+
# self.val_acc = Accuracy()
|
164 |
+
# self.train_acc = Accuracy()
|
165 |
+
|
166 |
+
def forward(self, input_ids, attention_mask, decoder_attention_mask, labels=None):
|
167 |
+
""" forward step """
|
168 |
+
output = self.model(
|
169 |
+
input_ids,
|
170 |
+
attention_mask=attention_mask,
|
171 |
+
labels=labels,
|
172 |
+
decoder_attention_mask=decoder_attention_mask,
|
173 |
+
)
|
174 |
+
|
175 |
+
return output.loss, output.logits
|
176 |
+
|
177 |
+
def training_step(self, batch, batch_size):
|
178 |
+
""" training step """
|
179 |
+
input_ids = batch["keywords_input_ids"]
|
180 |
+
attention_mask = batch["keywords_attention_mask"]
|
181 |
+
labels = batch["labels"]
|
182 |
+
labels_attention_mask = batch["labels_attention_mask"]
|
183 |
+
|
184 |
+
loss, outputs = self(
|
185 |
+
input_ids=input_ids,
|
186 |
+
attention_mask=attention_mask,
|
187 |
+
decoder_attention_mask=labels_attention_mask,
|
188 |
+
labels=labels,
|
189 |
+
)
|
190 |
+
self.log("train_loss", loss, prog_bar=True, logger=True)
|
191 |
+
return loss
|
192 |
+
|
193 |
+
def validation_step(self, batch, batch_size):
|
194 |
+
""" validation step """
|
195 |
+
input_ids = batch["keywords_input_ids"]
|
196 |
+
attention_mask = batch["keywords_attention_mask"]
|
197 |
+
labels = batch["labels"]
|
198 |
+
labels_attention_mask = batch["labels_attention_mask"]
|
199 |
+
|
200 |
+
loss, outputs = self(
|
201 |
+
input_ids=input_ids,
|
202 |
+
attention_mask=attention_mask,
|
203 |
+
decoder_attention_mask=labels_attention_mask,
|
204 |
+
labels=labels,
|
205 |
+
)
|
206 |
+
self.log("val_loss", loss, prog_bar=True, logger=True)
|
207 |
+
return loss
|
208 |
+
|
209 |
+
def test_step(self, batch, batch_size):
|
210 |
+
""" test step """
|
211 |
+
input_ids = batch["keywords_input_ids"]
|
212 |
+
attention_mask = batch["keywords_attention_mask"]
|
213 |
+
labels = batch["labels"]
|
214 |
+
labels_attention_mask = batch["labels_attention_mask"]
|
215 |
+
|
216 |
+
loss, outputs = self(
|
217 |
+
input_ids=input_ids,
|
218 |
+
attention_mask=attention_mask,
|
219 |
+
decoder_attention_mask=labels_attention_mask,
|
220 |
+
labels=labels,
|
221 |
+
)
|
222 |
+
|
223 |
+
self.log("test_loss", loss, prog_bar=True, logger=True)
|
224 |
+
return loss
|
225 |
+
|
226 |
+
def configure_optimizers(self):
|
227 |
+
""" configure optimizers """
|
228 |
+
model = self.model
|
229 |
+
no_decay = ["bias", "LayerNorm.weight"]
|
230 |
+
optimizer_grouped_parameters = [
|
231 |
+
{
|
232 |
+
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
|
233 |
+
"weight_decay": self.hparams.weight_decay,
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
|
237 |
+
"weight_decay": 0.0,
|
238 |
+
},
|
239 |
+
]
|
240 |
+
optimizer = AdamW(optimizer_grouped_parameters, lr=self.hparams.learning_rate, eps=self.hparams.adam_epsilon)
|
241 |
+
self.opt = optimizer
|
242 |
+
return [optimizer]
|
243 |
+
|
244 |
+
|
245 |
+
class Summarization:
|
246 |
+
""" Custom Summarization class """
|
247 |
+
|
248 |
+
def __init__(self) -> None:
|
249 |
+
""" initiates Summarization class """
|
250 |
+
pass
|
251 |
+
|
252 |
+
def from_pretrained(self, model_name="t5-base") -> None:
|
253 |
+
"""
|
254 |
+
loads T5/MT5 Model model for training/finetuning
|
255 |
+
Args:
|
256 |
+
model_name (str, optional): exact model architecture name, "t5-base" or "t5-large". Defaults to "t5-base".
|
257 |
+
"""
|
258 |
+
self.tokenizer = T5Tokenizer.from_pretrained(f"{model_name}")
|
259 |
+
self.model = T5ForConditionalGeneration.from_pretrained(
|
260 |
+
f"{model_name}", return_dict=True
|
261 |
+
)
|
262 |
+
|
263 |
+
def train(
|
264 |
+
self,
|
265 |
+
train_df: pd.DataFrame,
|
266 |
+
eval_df: pd.DataFrame,
|
267 |
+
source_max_token_len: int = 512,
|
268 |
+
target_max_token_len: int = 512,
|
269 |
+
batch_size: int = 8,
|
270 |
+
max_epochs: int = 5,
|
271 |
+
use_gpu: bool = True,
|
272 |
+
outputdir: str = "model",
|
273 |
+
early_stopping_patience_epochs: int = 0, # 0 to disable early stopping feature
|
274 |
+
):
|
275 |
+
"""
|
276 |
+
trains T5/MT5 model on custom dataset
|
277 |
+
Args:
|
278 |
+
train_df (pd.DataFrame): training datarame. Dataframe must have 2 column --> "input_text" and "output_text"
|
279 |
+
eval_df ([type], optional): validation datarame. Dataframe must have 2 column --> "input_text" and
|
280 |
+
"output_text"
|
281 |
+
source_max_token_len (int, optional): max token length of source text. Defaults to 512.
|
282 |
+
target_max_token_len (int, optional): max token length of target text. Defaults to 512.
|
283 |
+
batch_size (int, optional): batch size. Defaults to 8.
|
284 |
+
max_epochs (int, optional): max number of epochs. Defaults to 5.
|
285 |
+
use_gpu (bool, optional): if True, model uses gpu for training. Defaults to True.
|
286 |
+
outputdir (str, optional): output directory to save model checkpoints. Defaults to "outputs".
|
287 |
+
early_stopping_patience_epochs (int, optional): monitors val_loss on epoch end and stops training,
|
288 |
+
if val_loss does not improve after the specied number of epochs. set 0 to disable early stopping.
|
289 |
+
Defaults to 0 (disabled)
|
290 |
+
"""
|
291 |
+
self.target_max_token_len = target_max_token_len
|
292 |
+
self.data_module = PLDataModule(
|
293 |
+
train_df,
|
294 |
+
eval_df,
|
295 |
+
self.tokenizer,
|
296 |
+
batch_size=batch_size,
|
297 |
+
source_max_token_len=source_max_token_len,
|
298 |
+
target_max_token_len=target_max_token_len,
|
299 |
+
)
|
300 |
+
|
301 |
+
self.T5Model = LightningModel(
|
302 |
+
tokenizer=self.tokenizer, model=self.model, output=outputdir
|
303 |
+
)
|
304 |
+
|
305 |
+
# checkpoint_callback = ModelCheckpoint(
|
306 |
+
# dirpath="checkpoints",
|
307 |
+
# filename="best-checkpoint-{epoch}-{train_loss:.2f}",
|
308 |
+
# save_top_k=-1,
|
309 |
+
# verbose=True,
|
310 |
+
# monitor="train_loss",
|
311 |
+
# mode="min",
|
312 |
+
# )
|
313 |
+
|
314 |
+
logger = MLFlowLogger(experiment_name="Summarization")
|
315 |
+
|
316 |
+
early_stop_callback = (
|
317 |
+
[
|
318 |
+
EarlyStopping(
|
319 |
+
monitor="val_loss",
|
320 |
+
min_delta=0.00,
|
321 |
+
patience=early_stopping_patience_epochs,
|
322 |
+
verbose=True,
|
323 |
+
mode="min",
|
324 |
+
)
|
325 |
+
]
|
326 |
+
if early_stopping_patience_epochs > 0
|
327 |
+
else None
|
328 |
+
)
|
329 |
+
|
330 |
+
gpus = 1 if use_gpu else 0
|
331 |
+
|
332 |
+
trainer = Trainer(
|
333 |
+
logger=logger,
|
334 |
+
callbacks=early_stop_callback,
|
335 |
+
max_epochs=max_epochs,
|
336 |
+
gpus=gpus,
|
337 |
+
progress_bar_refresh_rate=5,
|
338 |
+
)
|
339 |
+
|
340 |
+
trainer.fit(self.T5Model, self.data_module)
|
341 |
+
|
342 |
+
def load_model(
|
343 |
+
self, model_dir: str = "model", use_gpu: bool = False
|
344 |
+
):
|
345 |
+
"""
|
346 |
+
loads a checkpoint for inferencing/prediction
|
347 |
+
Args:
|
348 |
+
model_type (str, optional): "t5" or "mt5". Defaults to "t5".
|
349 |
+
model_dir (str, optional): path to model directory. Defaults to "outputs".
|
350 |
+
use_gpu (bool, optional): if True, model uses gpu for inferencing/prediction. Defaults to True.
|
351 |
+
"""
|
352 |
+
self.model = T5ForConditionalGeneration.from_pretrained(f"{model_dir}")
|
353 |
+
self.tokenizer = T5Tokenizer.from_pretrained(f"{model_dir}")
|
354 |
+
|
355 |
+
if use_gpu:
|
356 |
+
if torch.cuda.is_available():
|
357 |
+
self.device = torch.device("cuda")
|
358 |
+
else:
|
359 |
+
raise Exception("exception ---> no gpu found. set use_gpu=False, to use CPU")
|
360 |
+
else:
|
361 |
+
self.device = torch.device("cpu")
|
362 |
+
|
363 |
+
self.model = self.model.to(self.device)
|
364 |
+
|
365 |
+
def save_model(
|
366 |
+
self,
|
367 |
+
model_dir="model"
|
368 |
+
):
|
369 |
+
"""
|
370 |
+
Save model to dir
|
371 |
+
:param model_dir:
|
372 |
+
:return: model is saved
|
373 |
+
"""
|
374 |
+
path = f"{model_dir}"
|
375 |
+
self.tokenizer.save_pretrained(path)
|
376 |
+
self.model.save_pretrained(path)
|
377 |
+
|
378 |
+
def predict(
|
379 |
+
self,
|
380 |
+
source_text: str,
|
381 |
+
max_length: int = 512,
|
382 |
+
num_return_sequences: int = 1,
|
383 |
+
num_beams: int = 2,
|
384 |
+
top_k: int = 50,
|
385 |
+
top_p: float = 0.95,
|
386 |
+
do_sample: bool = True,
|
387 |
+
repetition_penalty: float = 2.5,
|
388 |
+
length_penalty: float = 1.0,
|
389 |
+
early_stopping: bool = True,
|
390 |
+
skip_special_tokens: bool = True,
|
391 |
+
clean_up_tokenization_spaces: bool = True,
|
392 |
+
):
|
393 |
+
"""
|
394 |
+
generates prediction for T5/MT5 model
|
395 |
+
Args:
|
396 |
+
source_text (str): any text for generating predictions
|
397 |
+
max_length (int, optional): max token length of prediction. Defaults to 512.
|
398 |
+
num_return_sequences (int, optional): number of predictions to be returned. Defaults to 1.
|
399 |
+
num_beams (int, optional): number of beams. Defaults to 2.
|
400 |
+
top_k (int, optional): Defaults to 50.
|
401 |
+
top_p (float, optional): Defaults to 0.95.
|
402 |
+
do_sample (bool, optional): Defaults to True.
|
403 |
+
repetition_penalty (float, optional): Defaults to 2.5.
|
404 |
+
length_penalty (float, optional): Defaults to 1.0.
|
405 |
+
early_stopping (bool, optional): Defaults to True.
|
406 |
+
skip_special_tokens (bool, optional): Defaults to True.
|
407 |
+
clean_up_tokenization_spaces (bool, optional): Defaults to True.
|
408 |
+
Returns:
|
409 |
+
list[str]: returns predictions
|
410 |
+
"""
|
411 |
+
input_ids = self.tokenizer.encode(
|
412 |
+
source_text, return_tensors="pt", add_special_tokens=True
|
413 |
+
)
|
414 |
+
|
415 |
+
input_ids = input_ids.to(self.device)
|
416 |
+
generated_ids = self.model.generate(
|
417 |
+
input_ids=input_ids,
|
418 |
+
num_beams=num_beams,
|
419 |
+
max_length=max_length,
|
420 |
+
repetition_penalty=repetition_penalty,
|
421 |
+
length_penalty=length_penalty,
|
422 |
+
early_stopping=early_stopping,
|
423 |
+
top_p=top_p,
|
424 |
+
top_k=top_k,
|
425 |
+
num_return_sequences=num_return_sequences,
|
426 |
+
)
|
427 |
+
preds = [
|
428 |
+
self.tokenizer.decode(
|
429 |
+
g,
|
430 |
+
skip_special_tokens=skip_special_tokens,
|
431 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
432 |
+
)
|
433 |
+
for g in generated_ids
|
434 |
+
]
|
435 |
+
return preds
|
src/models/train_model.py
CHANGED
@@ -1,441 +0,0 @@
|
|
1 |
-
import time
|
2 |
-
|
3 |
-
import torch
|
4 |
-
import numpy as np
|
5 |
-
import pandas as pd
|
6 |
-
from datasets import load_metric
|
7 |
-
from tqdm.auto import tqdm
|
8 |
-
from transformers import (
|
9 |
-
AdamW,
|
10 |
-
T5ForConditionalGeneration,
|
11 |
-
MT5ForConditionalGeneration,
|
12 |
-
T5TokenizerFast as T5Tokenizer,
|
13 |
-
MT5TokenizerFast as MT5Tokenizer,
|
14 |
-
)
|
15 |
-
from transformers import AutoTokenizer
|
16 |
-
from torch.utils.data import Dataset, DataLoader
|
17 |
-
from transformers import AutoModelWithLMHead, AutoTokenizer
|
18 |
-
import pytorch_lightning as pl
|
19 |
-
from pytorch_lightning.loggers import MLFlowLogger
|
20 |
-
from pytorch_lightning import Trainer
|
21 |
-
from pytorch_lightning.callbacks.early_stopping import EarlyStopping
|
22 |
-
from pytorch_lightning import LightningDataModule
|
23 |
-
from pytorch_lightning import LightningModule
|
24 |
-
|
25 |
-
torch.cuda.empty_cache()
|
26 |
-
pl.seed_everything(42)
|
27 |
-
|
28 |
-
|
29 |
-
class DataModule(Dataset):
|
30 |
-
"""
|
31 |
-
Data Module for pytorch
|
32 |
-
"""
|
33 |
-
|
34 |
-
def __init__(
|
35 |
-
self,
|
36 |
-
data: pd.DataFrame,
|
37 |
-
tokenizer: T5Tokenizer,
|
38 |
-
source_max_token_len: int = 512,
|
39 |
-
target_max_token_len: int = 512,
|
40 |
-
):
|
41 |
-
"""
|
42 |
-
:param data:
|
43 |
-
:param tokenizer:
|
44 |
-
:param source_max_token_len:
|
45 |
-
:param target_max_token_len:
|
46 |
-
"""
|
47 |
-
self.data = data
|
48 |
-
self.target_max_token_len = target_max_token_len
|
49 |
-
self.source_max_token_len = source_max_token_len
|
50 |
-
self.tokenizer = tokenizer
|
51 |
-
|
52 |
-
def __len__(self):
|
53 |
-
return len(self.data)
|
54 |
-
|
55 |
-
def __getitem__(self, index: int):
|
56 |
-
data_row = self.data.iloc[index]
|
57 |
-
|
58 |
-
input_encoding = self.tokenizer(
|
59 |
-
data_row["input_text"],
|
60 |
-
max_length=self.source_max_token_len,
|
61 |
-
padding="max_length",
|
62 |
-
truncation=True,
|
63 |
-
return_attention_mask=True,
|
64 |
-
add_special_tokens=True,
|
65 |
-
return_tensors="pt",
|
66 |
-
)
|
67 |
-
|
68 |
-
output_encoding = self.tokenizer(
|
69 |
-
data_row["output_text"],
|
70 |
-
max_length=self.target_max_token_len,
|
71 |
-
padding="max_length",
|
72 |
-
truncation=True,
|
73 |
-
return_attention_mask=True,
|
74 |
-
add_special_tokens=True,
|
75 |
-
return_tensors="pt",
|
76 |
-
)
|
77 |
-
|
78 |
-
labels = output_encoding["input_ids"]
|
79 |
-
labels[
|
80 |
-
labels == 0
|
81 |
-
] = -100
|
82 |
-
|
83 |
-
return dict(
|
84 |
-
keywords=data_row["keywords"],
|
85 |
-
text=data_row["text"],
|
86 |
-
keywords_input_ids=input_encoding["input_ids"].flatten(),
|
87 |
-
keywords_attention_mask=input_encoding["attention_mask"].flatten(),
|
88 |
-
labels=labels.flatten(),
|
89 |
-
labels_attention_mask=output_encoding["attention_mask"].flatten(),
|
90 |
-
)
|
91 |
-
|
92 |
-
|
93 |
-
class PLDataModule(LightningDataModule):
|
94 |
-
def __init__(
|
95 |
-
self,
|
96 |
-
train_df: pd.DataFrame,
|
97 |
-
test_df: pd.DataFrame,
|
98 |
-
tokenizer: T5Tokenizer,
|
99 |
-
source_max_token_len: int = 512,
|
100 |
-
target_max_token_len: int = 512,
|
101 |
-
batch_size: int = 4,
|
102 |
-
split: float = 0.1
|
103 |
-
):
|
104 |
-
"""
|
105 |
-
:param data_df:
|
106 |
-
:param tokenizer:
|
107 |
-
:param source_max_token_len:
|
108 |
-
:param target_max_token_len:
|
109 |
-
:param batch_size:
|
110 |
-
:param split:
|
111 |
-
"""
|
112 |
-
super().__init__()
|
113 |
-
self.train_df = train_df
|
114 |
-
self.test_df = test_df
|
115 |
-
self.split = split
|
116 |
-
self.batch_size = batch_size
|
117 |
-
self.target_max_token_len = target_max_token_len
|
118 |
-
self.source_max_token_len = source_max_token_len
|
119 |
-
self.tokenizer = tokenizer
|
120 |
-
|
121 |
-
def setup(self, stage=None):
|
122 |
-
self.train_dataset = DataModule(
|
123 |
-
self.train_df,
|
124 |
-
self.tokenizer,
|
125 |
-
self.source_max_token_len,
|
126 |
-
self.target_max_token_len,
|
127 |
-
)
|
128 |
-
self.test_dataset = DataModule(
|
129 |
-
self.test_df,
|
130 |
-
self.tokenizer,
|
131 |
-
self.source_max_token_len,
|
132 |
-
self.target_max_token_len,
|
133 |
-
)
|
134 |
-
|
135 |
-
def train_dataloader(self):
|
136 |
-
""" training dataloader """
|
137 |
-
return DataLoader(
|
138 |
-
self.train_dataset, batch_size=self.batch_size, shuffle=True, num_workers=2
|
139 |
-
)
|
140 |
-
|
141 |
-
def test_dataloader(self):
|
142 |
-
""" test dataloader """
|
143 |
-
return DataLoader(
|
144 |
-
self.test_dataset, batch_size=self.batch_size, shuffle=False, num_workers=2
|
145 |
-
)
|
146 |
-
|
147 |
-
def val_dataloader(self):
|
148 |
-
""" validation dataloader """
|
149 |
-
return DataLoader(
|
150 |
-
self.test_dataset, batch_size=self.batch_size, shuffle=False, num_workers=2
|
151 |
-
)
|
152 |
-
|
153 |
-
|
154 |
-
class LightningModel(LightningModule):
|
155 |
-
""" PyTorch Lightning Model class"""
|
156 |
-
|
157 |
-
def __init__(self, tokenizer, model, output: str = "outputs"):
|
158 |
-
"""
|
159 |
-
initiates a PyTorch Lightning Model
|
160 |
-
Args:
|
161 |
-
tokenizer : T5 tokenizer
|
162 |
-
model : T5 model
|
163 |
-
output (str, optional): output directory to save model checkpoints. Defaults to "outputs".
|
164 |
-
"""
|
165 |
-
super().__init__()
|
166 |
-
self.model = model
|
167 |
-
self.tokenizer = tokenizer
|
168 |
-
self.output = output
|
169 |
-
# self.val_acc = Accuracy()
|
170 |
-
# self.train_acc = Accuracy()
|
171 |
-
|
172 |
-
def forward(self, input_ids, attention_mask, decoder_attention_mask, labels=None):
|
173 |
-
""" forward step """
|
174 |
-
output = self.model(
|
175 |
-
input_ids,
|
176 |
-
attention_mask=attention_mask,
|
177 |
-
labels=labels,
|
178 |
-
decoder_attention_mask=decoder_attention_mask,
|
179 |
-
)
|
180 |
-
|
181 |
-
return output.loss, output.logits
|
182 |
-
|
183 |
-
def training_step(self, batch, batch_size):
|
184 |
-
""" training step """
|
185 |
-
input_ids = batch["keywords_input_ids"]
|
186 |
-
attention_mask = batch["keywords_attention_mask"]
|
187 |
-
labels = batch["labels"]
|
188 |
-
labels_attention_mask = batch["labels_attention_mask"]
|
189 |
-
|
190 |
-
loss, outputs = self(
|
191 |
-
input_ids=input_ids,
|
192 |
-
attention_mask=attention_mask,
|
193 |
-
decoder_attention_mask=labels_attention_mask,
|
194 |
-
labels=labels,
|
195 |
-
)
|
196 |
-
self.log("train_loss", loss, prog_bar=True, logger=True)
|
197 |
-
return loss
|
198 |
-
|
199 |
-
def validation_step(self, batch, batch_size):
|
200 |
-
""" validation step """
|
201 |
-
input_ids = batch["keywords_input_ids"]
|
202 |
-
attention_mask = batch["keywords_attention_mask"]
|
203 |
-
labels = batch["labels"]
|
204 |
-
labels_attention_mask = batch["labels_attention_mask"]
|
205 |
-
|
206 |
-
loss, outputs = self(
|
207 |
-
input_ids=input_ids,
|
208 |
-
attention_mask=attention_mask,
|
209 |
-
decoder_attention_mask=labels_attention_mask,
|
210 |
-
labels=labels,
|
211 |
-
)
|
212 |
-
self.log("val_loss", loss, prog_bar=True, logger=True)
|
213 |
-
return loss
|
214 |
-
|
215 |
-
def test_step(self, batch, batch_size):
|
216 |
-
""" test step """
|
217 |
-
input_ids = batch["keywords_input_ids"]
|
218 |
-
attention_mask = batch["keywords_attention_mask"]
|
219 |
-
labels = batch["labels"]
|
220 |
-
labels_attention_mask = batch["labels_attention_mask"]
|
221 |
-
|
222 |
-
loss, outputs = self(
|
223 |
-
input_ids=input_ids,
|
224 |
-
attention_mask=attention_mask,
|
225 |
-
decoder_attention_mask=labels_attention_mask,
|
226 |
-
labels=labels,
|
227 |
-
)
|
228 |
-
|
229 |
-
self.log("test_loss", loss, prog_bar=True, logger=True)
|
230 |
-
return loss
|
231 |
-
|
232 |
-
def configure_optimizers(self):
|
233 |
-
""" configure optimizers """
|
234 |
-
model = self.model
|
235 |
-
no_decay = ["bias", "LayerNorm.weight"]
|
236 |
-
optimizer_grouped_parameters = [
|
237 |
-
{
|
238 |
-
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
|
239 |
-
"weight_decay": self.hparams.weight_decay,
|
240 |
-
},
|
241 |
-
{
|
242 |
-
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
|
243 |
-
"weight_decay": 0.0,
|
244 |
-
},
|
245 |
-
]
|
246 |
-
optimizer = AdamW(optimizer_grouped_parameters, lr=self.hparams.learning_rate, eps=self.hparams.adam_epsilon)
|
247 |
-
self.opt = optimizer
|
248 |
-
return [optimizer]
|
249 |
-
|
250 |
-
|
251 |
-
class Summarization:
|
252 |
-
""" Custom Summarization class """
|
253 |
-
|
254 |
-
def __init__(self) -> None:
|
255 |
-
""" initiates Summarization class """
|
256 |
-
pass
|
257 |
-
|
258 |
-
def from_pretrained(self, model_name="t5-base") -> None:
|
259 |
-
"""
|
260 |
-
loads T5/MT5 Model model for training/finetuning
|
261 |
-
Args:
|
262 |
-
model_name (str, optional): exact model architecture name, "t5-base" or "t5-large". Defaults to "t5-base".
|
263 |
-
"""
|
264 |
-
self.tokenizer = T5Tokenizer.from_pretrained(f"{model_name}")
|
265 |
-
self.model = T5ForConditionalGeneration.from_pretrained(
|
266 |
-
f"{model_name}", return_dict=True
|
267 |
-
)
|
268 |
-
|
269 |
-
def train(
|
270 |
-
self,
|
271 |
-
train_df: pd.DataFrame,
|
272 |
-
eval_df: pd.DataFrame,
|
273 |
-
source_max_token_len: int = 512,
|
274 |
-
target_max_token_len: int = 512,
|
275 |
-
batch_size: int = 8,
|
276 |
-
max_epochs: int = 5,
|
277 |
-
use_gpu: bool = True,
|
278 |
-
outputdir: str = "model",
|
279 |
-
early_stopping_patience_epochs: int = 0, # 0 to disable early stopping feature
|
280 |
-
):
|
281 |
-
"""
|
282 |
-
trains T5/MT5 model on custom dataset
|
283 |
-
Args:
|
284 |
-
train_df (pd.DataFrame): training datarame. Dataframe must have 2 column --> "input_text" and "output_text"
|
285 |
-
eval_df ([type], optional): validation datarame. Dataframe must have 2 column --> "input_text" and
|
286 |
-
"output_text"
|
287 |
-
source_max_token_len (int, optional): max token length of source text. Defaults to 512.
|
288 |
-
target_max_token_len (int, optional): max token length of target text. Defaults to 512.
|
289 |
-
batch_size (int, optional): batch size. Defaults to 8.
|
290 |
-
max_epochs (int, optional): max number of epochs. Defaults to 5.
|
291 |
-
use_gpu (bool, optional): if True, model uses gpu for training. Defaults to True.
|
292 |
-
outputdir (str, optional): output directory to save model checkpoints. Defaults to "outputs".
|
293 |
-
early_stopping_patience_epochs (int, optional): monitors val_loss on epoch end and stops training,
|
294 |
-
if val_loss does not improve after the specied number of epochs. set 0 to disable early stopping.
|
295 |
-
Defaults to 0 (disabled)
|
296 |
-
"""
|
297 |
-
self.target_max_token_len = target_max_token_len
|
298 |
-
self.data_module = PLDataModule(
|
299 |
-
train_df,
|
300 |
-
eval_df,
|
301 |
-
self.tokenizer,
|
302 |
-
batch_size=batch_size,
|
303 |
-
source_max_token_len=source_max_token_len,
|
304 |
-
target_max_token_len=target_max_token_len,
|
305 |
-
)
|
306 |
-
|
307 |
-
self.T5Model = LightningModel(
|
308 |
-
tokenizer=self.tokenizer, model=self.model, output=outputdir
|
309 |
-
)
|
310 |
-
|
311 |
-
# checkpoint_callback = ModelCheckpoint(
|
312 |
-
# dirpath="checkpoints",
|
313 |
-
# filename="best-checkpoint-{epoch}-{train_loss:.2f}",
|
314 |
-
# save_top_k=-1,
|
315 |
-
# verbose=True,
|
316 |
-
# monitor="train_loss",
|
317 |
-
# mode="min",
|
318 |
-
# )
|
319 |
-
|
320 |
-
logger = MLFlowLogger(experiment_name="Summarization")
|
321 |
-
|
322 |
-
early_stop_callback = (
|
323 |
-
[
|
324 |
-
EarlyStopping(
|
325 |
-
monitor="val_loss",
|
326 |
-
min_delta=0.00,
|
327 |
-
patience=early_stopping_patience_epochs,
|
328 |
-
verbose=True,
|
329 |
-
mode="min",
|
330 |
-
)
|
331 |
-
]
|
332 |
-
if early_stopping_patience_epochs > 0
|
333 |
-
else None
|
334 |
-
)
|
335 |
-
|
336 |
-
gpus = 1 if use_gpu else 0
|
337 |
-
|
338 |
-
trainer = pl.Trainer(
|
339 |
-
logger=logger,
|
340 |
-
callbacks=early_stop_callback,
|
341 |
-
max_epochs=max_epochs,
|
342 |
-
gpus=gpus,
|
343 |
-
progress_bar_refresh_rate=5,
|
344 |
-
)
|
345 |
-
|
346 |
-
trainer.fit(self.T5Model, self.data_module)
|
347 |
-
|
348 |
-
def load_model(
|
349 |
-
self, model_dir: str = "model", use_gpu: bool = False
|
350 |
-
):
|
351 |
-
"""
|
352 |
-
loads a checkpoint for inferencing/prediction
|
353 |
-
Args:
|
354 |
-
model_type (str, optional): "t5" or "mt5". Defaults to "t5".
|
355 |
-
model_dir (str, optional): path to model directory. Defaults to "outputs".
|
356 |
-
use_gpu (bool, optional): if True, model uses gpu for inferencing/prediction. Defaults to True.
|
357 |
-
"""
|
358 |
-
self.model = T5ForConditionalGeneration.from_pretrained(f"{model_dir}")
|
359 |
-
self.tokenizer = T5Tokenizer.from_pretrained(f"{model_dir}")
|
360 |
-
|
361 |
-
if use_gpu:
|
362 |
-
if torch.cuda.is_available():
|
363 |
-
self.device = torch.device("cuda")
|
364 |
-
else:
|
365 |
-
raise Exception("exception ---> no gpu found. set use_gpu=False, to use CPU")
|
366 |
-
else:
|
367 |
-
self.device = torch.device("cpu")
|
368 |
-
|
369 |
-
self.model = self.model.to(self.device)
|
370 |
-
|
371 |
-
def save_model(
|
372 |
-
self,
|
373 |
-
model_dir="model"
|
374 |
-
):
|
375 |
-
"""
|
376 |
-
Save model to dir
|
377 |
-
:param model_dir:
|
378 |
-
:return: model is saved
|
379 |
-
"""
|
380 |
-
path = f"{model_dir}"
|
381 |
-
self.tokenizer.save_pretrained(path)
|
382 |
-
self.model.save_pretrained(path)
|
383 |
-
|
384 |
-
def predict(
|
385 |
-
self,
|
386 |
-
source_text: str,
|
387 |
-
max_length: int = 512,
|
388 |
-
num_return_sequences: int = 1,
|
389 |
-
num_beams: int = 2,
|
390 |
-
top_k: int = 50,
|
391 |
-
top_p: float = 0.95,
|
392 |
-
do_sample: bool = True,
|
393 |
-
repetition_penalty: float = 2.5,
|
394 |
-
length_penalty: float = 1.0,
|
395 |
-
early_stopping: bool = True,
|
396 |
-
skip_special_tokens: bool = True,
|
397 |
-
clean_up_tokenization_spaces: bool = True,
|
398 |
-
):
|
399 |
-
"""
|
400 |
-
generates prediction for T5/MT5 model
|
401 |
-
Args:
|
402 |
-
source_text (str): any text for generating predictions
|
403 |
-
max_length (int, optional): max token length of prediction. Defaults to 512.
|
404 |
-
num_return_sequences (int, optional): number of predictions to be returned. Defaults to 1.
|
405 |
-
num_beams (int, optional): number of beams. Defaults to 2.
|
406 |
-
top_k (int, optional): Defaults to 50.
|
407 |
-
top_p (float, optional): Defaults to 0.95.
|
408 |
-
do_sample (bool, optional): Defaults to True.
|
409 |
-
repetition_penalty (float, optional): Defaults to 2.5.
|
410 |
-
length_penalty (float, optional): Defaults to 1.0.
|
411 |
-
early_stopping (bool, optional): Defaults to True.
|
412 |
-
skip_special_tokens (bool, optional): Defaults to True.
|
413 |
-
clean_up_tokenization_spaces (bool, optional): Defaults to True.
|
414 |
-
Returns:
|
415 |
-
list[str]: returns predictions
|
416 |
-
"""
|
417 |
-
input_ids = self.tokenizer.encode(
|
418 |
-
source_text, return_tensors="pt", add_special_tokens=True
|
419 |
-
)
|
420 |
-
|
421 |
-
input_ids = input_ids.to(self.device)
|
422 |
-
generated_ids = self.model.generate(
|
423 |
-
input_ids=input_ids,
|
424 |
-
num_beams=num_beams,
|
425 |
-
max_length=max_length,
|
426 |
-
repetition_penalty=repetition_penalty,
|
427 |
-
length_penalty=length_penalty,
|
428 |
-
early_stopping=early_stopping,
|
429 |
-
top_p=top_p,
|
430 |
-
top_k=top_k,
|
431 |
-
num_return_sequences=num_return_sequences,
|
432 |
-
)
|
433 |
-
preds = [
|
434 |
-
self.tokenizer.decode(
|
435 |
-
g,
|
436 |
-
skip_special_tokens=skip_special_tokens,
|
437 |
-
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
438 |
-
)
|
439 |
-
for g in generated_ids
|
440 |
-
]
|
441 |
-
return preds
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|