Spaces:
Runtime error
Runtime error
black style added
Browse files- Makefile +1 -0
- src/data/make_dataset.py +11 -12
- src/data/process_data.py +9 -9
- src/models/__init__.py +1 -1
- src/models/evaluate_model.py +5 -5
- src/models/model.py +150 -121
- src/models/predict_model.py +3 -4
- src/models/train_model.py +23 -16
Makefile
CHANGED
@@ -35,6 +35,7 @@ clean:
|
|
35 |
## Lint using flake8
|
36 |
lint:
|
37 |
flake8 src
|
|
|
38 |
|
39 |
## Upload Data to default DVC remote
|
40 |
push:
|
|
|
35 |
## Lint using flake8
|
36 |
lint:
|
37 |
flake8 src
|
38 |
+
black src
|
39 |
|
40 |
## Upload Data to default DVC remote
|
41 |
push:
|
src/data/make_dataset.py
CHANGED
@@ -5,22 +5,21 @@ import os
|
|
5 |
import pprint
|
6 |
|
7 |
|
8 |
-
|
9 |
-
def make_dataset(dataset='cnn_dailymail', split='train'):
|
10 |
"""make dataset for summarisation"""
|
11 |
-
if not os.path.exists(
|
12 |
-
os.makedirs(
|
13 |
-
dataset = load_dataset(dataset,
|
14 |
df = pd.DataFrame()
|
15 |
-
df[
|
16 |
-
df[
|
17 |
-
df.to_csv(
|
18 |
|
19 |
|
20 |
-
if __name__ ==
|
21 |
with open("params.yml") as f:
|
22 |
params = yaml.safe_load(f)
|
23 |
pprint.pprint(params)
|
24 |
-
make_dataset(dataset=params[
|
25 |
-
make_dataset(dataset=params[
|
26 |
-
make_dataset(dataset=params[
|
|
|
5 |
import pprint
|
6 |
|
7 |
|
8 |
+
def make_dataset(dataset="cnn_dailymail", split="train"):
|
|
|
9 |
"""make dataset for summarisation"""
|
10 |
+
if not os.path.exists("data/raw"):
|
11 |
+
os.makedirs("data/raw")
|
12 |
+
dataset = load_dataset(dataset, "3.0.0", split=split)
|
13 |
df = pd.DataFrame()
|
14 |
+
df["article"] = dataset["article"]
|
15 |
+
df["highlights"] = dataset["highlights"]
|
16 |
+
df.to_csv("data/raw/{}.csv".format(split))
|
17 |
|
18 |
|
19 |
+
if __name__ == "__main__":
|
20 |
with open("params.yml") as f:
|
21 |
params = yaml.safe_load(f)
|
22 |
pprint.pprint(params)
|
23 |
+
make_dataset(dataset=params["data"], split="train")
|
24 |
+
make_dataset(dataset=params["data"], split="test")
|
25 |
+
make_dataset(dataset=params["data"], split="validation")
|
src/data/process_data.py
CHANGED
@@ -3,20 +3,20 @@ import yaml
|
|
3 |
import os
|
4 |
|
5 |
|
6 |
-
def process_data(split=
|
7 |
|
8 |
with open("params.yml") as f:
|
9 |
params = yaml.safe_load(f)
|
10 |
|
11 |
-
df = pd.read_csv(
|
12 |
-
df.columns = [
|
13 |
-
df = df.sample(frac=params[
|
14 |
if os.path.exists("data/raw/{}.csv".format(split)):
|
15 |
os.remove("data/raw/{}.csv".format(split))
|
16 |
-
df.to_csv(
|
17 |
|
18 |
|
19 |
-
if __name__ ==
|
20 |
-
process_data(split=
|
21 |
-
process_data(split=
|
22 |
-
process_data(split=
|
|
|
3 |
import os
|
4 |
|
5 |
|
6 |
+
def process_data(split="train"):
|
7 |
|
8 |
with open("params.yml") as f:
|
9 |
params = yaml.safe_load(f)
|
10 |
|
11 |
+
df = pd.read_csv("data/raw/{}.csv".format(split))
|
12 |
+
df.columns = ["Unnamed: 0", "input_text", "output_text"]
|
13 |
+
df = df.sample(frac=params["split"], replace=True, random_state=1)
|
14 |
if os.path.exists("data/raw/{}.csv".format(split)):
|
15 |
os.remove("data/raw/{}.csv".format(split))
|
16 |
+
df.to_csv("data/processed/{}.csv".format(split))
|
17 |
|
18 |
|
19 |
+
if __name__ == "__main__":
|
20 |
+
process_data(split="train")
|
21 |
+
process_data(split="test")
|
22 |
+
process_data(split="validation")
|
src/models/__init__.py
CHANGED
@@ -1 +1 @@
|
|
1 |
-
from .model import Summarization
|
|
|
1 |
+
from .model import Summarization
|
src/models/evaluate_model.py
CHANGED
@@ -13,14 +13,14 @@ def evaluate_model():
|
|
13 |
with open("params.yml") as f:
|
14 |
params = yaml.safe_load(f)
|
15 |
|
16 |
-
test_df = pd.read_csv(
|
17 |
model = Summarization()
|
18 |
-
model.load_model(model_type=params[
|
19 |
-
results = model.evaluate(test_df=test_df, metrics=params[
|
20 |
|
21 |
-
with open(
|
22 |
json.dump(results, fp)
|
23 |
|
24 |
|
25 |
-
if __name__ ==
|
26 |
evaluate_model()
|
|
|
13 |
with open("params.yml") as f:
|
14 |
params = yaml.safe_load(f)
|
15 |
|
16 |
+
test_df = pd.read_csv("data/processed/test.csv")[:25]
|
17 |
model = Summarization()
|
18 |
+
model.load_model(model_type=params["model_type"], model_dir=params["model_dir"])
|
19 |
+
results = model.evaluate(test_df=test_df, metrics=params["metric"])
|
20 |
|
21 |
+
with open("reports/metrics.txt", "w") as fp:
|
22 |
json.dump(results, fp)
|
23 |
|
24 |
|
25 |
+
if __name__ == "__main__":
|
26 |
evaluate_model()
|
src/models/model.py
CHANGED
@@ -3,7 +3,10 @@ import pandas as pd
|
|
3 |
from transformers import (
|
4 |
AdamW,
|
5 |
T5ForConditionalGeneration,
|
6 |
-
T5TokenizerFast as T5Tokenizer,
|
|
|
|
|
|
|
7 |
)
|
8 |
from torch.utils.data import Dataset, DataLoader
|
9 |
import pytorch_lightning as pl
|
@@ -28,11 +31,11 @@ class DataModule(Dataset):
|
|
28 |
"""
|
29 |
|
30 |
def __init__(
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
):
|
37 |
"""
|
38 |
:param data:
|
@@ -72,9 +75,7 @@ class DataModule(Dataset):
|
|
72 |
)
|
73 |
|
74 |
labels = output_encoding["input_ids"]
|
75 |
-
labels[
|
76 |
-
labels == 0
|
77 |
-
] = -100
|
78 |
|
79 |
return dict(
|
80 |
keywords=data_row["input_text"],
|
@@ -88,15 +89,15 @@ class DataModule(Dataset):
|
|
88 |
|
89 |
class PLDataModule(LightningDataModule):
|
90 |
def __init__(
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
):
|
101 |
"""
|
102 |
:param data_df:
|
@@ -131,28 +132,45 @@ class PLDataModule(LightningDataModule):
|
|
131 |
)
|
132 |
|
133 |
def train_dataloader(self):
|
134 |
-
"""
|
135 |
return DataLoader(
|
136 |
-
self.train_dataset,
|
|
|
|
|
|
|
137 |
)
|
138 |
|
139 |
def test_dataloader(self):
|
140 |
-
"""
|
141 |
return DataLoader(
|
142 |
-
self.test_dataset,
|
|
|
|
|
|
|
143 |
)
|
144 |
|
145 |
def val_dataloader(self):
|
146 |
-
"""
|
147 |
return DataLoader(
|
148 |
-
self.test_dataset,
|
|
|
|
|
|
|
149 |
)
|
150 |
|
151 |
|
152 |
class LightningModel(LightningModule):
|
153 |
-
"""
|
154 |
|
155 |
-
def __init__(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
"""
|
157 |
initiates a PyTorch Lightning Model
|
158 |
Args:
|
@@ -169,7 +187,7 @@ class LightningModel(LightningModule):
|
|
169 |
self.weight_decay = weight_decay
|
170 |
|
171 |
def forward(self, input_ids, attention_mask, decoder_attention_mask, labels=None):
|
172 |
-
"""
|
173 |
output = self.model(
|
174 |
input_ids,
|
175 |
attention_mask=attention_mask,
|
@@ -180,7 +198,7 @@ class LightningModel(LightningModule):
|
|
180 |
return output.loss, output.logits
|
181 |
|
182 |
def training_step(self, batch, batch_size):
|
183 |
-
"""
|
184 |
input_ids = batch["keywords_input_ids"]
|
185 |
attention_mask = batch["keywords_attention_mask"]
|
186 |
labels = batch["labels"]
|
@@ -196,7 +214,7 @@ class LightningModel(LightningModule):
|
|
196 |
return loss
|
197 |
|
198 |
def validation_step(self, batch, batch_size):
|
199 |
-
"""
|
200 |
input_ids = batch["keywords_input_ids"]
|
201 |
attention_mask = batch["keywords_attention_mask"]
|
202 |
labels = batch["labels"]
|
@@ -212,7 +230,7 @@ class LightningModel(LightningModule):
|
|
212 |
return loss
|
213 |
|
214 |
def test_step(self, batch, batch_size):
|
215 |
-
"""
|
216 |
input_ids = batch["keywords_input_ids"]
|
217 |
attention_mask = batch["keywords_attention_mask"]
|
218 |
labels = batch["labels"]
|
@@ -229,29 +247,39 @@ class LightningModel(LightningModule):
|
|
229 |
return loss
|
230 |
|
231 |
def configure_optimizers(self):
|
232 |
-
"""
|
233 |
model = self.model
|
234 |
no_decay = ["bias", "LayerNorm.weight"]
|
235 |
optimizer_grouped_parameters = [
|
236 |
{
|
237 |
-
"params": [
|
|
|
|
|
|
|
|
|
238 |
"weight_decay": self.weight_decay,
|
239 |
},
|
240 |
{
|
241 |
-
"params": [
|
|
|
|
|
|
|
|
|
242 |
"weight_decay": 0.0,
|
243 |
},
|
244 |
]
|
245 |
-
optimizer = AdamW(
|
|
|
|
|
246 |
self.opt = optimizer
|
247 |
return [optimizer]
|
248 |
|
249 |
|
250 |
class Summarization:
|
251 |
-
"""
|
252 |
|
253 |
def __init__(self) -> None:
|
254 |
-
"""
|
255 |
pass
|
256 |
|
257 |
def from_pretrained(self, model_type="t5", model_name="t5-base") -> None:
|
@@ -278,20 +306,20 @@ class Summarization:
|
|
278 |
)
|
279 |
|
280 |
def train(
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
):
|
296 |
"""
|
297 |
trains T5/MT5 model on custom dataset
|
@@ -323,12 +351,18 @@ class Summarization:
|
|
323 |
)
|
324 |
|
325 |
self.T5Model = LightningModel(
|
326 |
-
tokenizer=self.tokenizer,
|
327 |
-
|
|
|
|
|
|
|
|
|
328 |
)
|
329 |
|
330 |
-
MLlogger = MLFlowLogger(
|
331 |
-
|
|
|
|
|
332 |
|
333 |
WandLogger = WandbLogger(project="summarization-dagshub")
|
334 |
|
@@ -361,7 +395,7 @@ class Summarization:
|
|
361 |
trainer.fit(self.T5Model, self.data_module)
|
362 |
|
363 |
def load_model(
|
364 |
-
|
365 |
):
|
366 |
"""
|
367 |
loads a checkpoint for inferencing/prediction
|
@@ -390,16 +424,15 @@ class Summarization:
|
|
390 |
if torch.cuda.is_available():
|
391 |
self.device = torch.device("cuda")
|
392 |
else:
|
393 |
-
raise Exception(
|
|
|
|
|
394 |
else:
|
395 |
self.device = torch.device("cpu")
|
396 |
|
397 |
self.model = self.model.to(self.device)
|
398 |
|
399 |
-
def save_model(
|
400 |
-
self,
|
401 |
-
model_dir="models"
|
402 |
-
):
|
403 |
"""
|
404 |
Save model to dir
|
405 |
:param model_dir:
|
@@ -410,19 +443,19 @@ class Summarization:
|
|
410 |
self.model.save_pretrained(path)
|
411 |
|
412 |
def predict(
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
):
|
427 |
"""
|
428 |
generates prediction for T5/MT5 model
|
@@ -465,14 +498,10 @@ class Summarization:
|
|
465 |
)
|
466 |
return preds
|
467 |
|
468 |
-
def evaluate(
|
469 |
-
self,
|
470 |
-
test_df: pd.DataFrame,
|
471 |
-
metrics: str = "rouge"
|
472 |
-
):
|
473 |
metric = load_metric(metrics)
|
474 |
-
input_text = test_df[
|
475 |
-
references = test_df[
|
476 |
references = references.to_list()
|
477 |
|
478 |
predictions = [self.predict(x) for x in tqdm(input_text)]
|
@@ -480,49 +509,49 @@ class Summarization:
|
|
480 |
results = metric.compute(predictions=predictions, references=references)
|
481 |
|
482 |
output = {
|
483 |
-
|
484 |
-
|
485 |
-
|
486 |
-
|
487 |
-
|
488 |
-
|
489 |
-
|
490 |
-
|
491 |
-
|
492 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
493 |
},
|
494 |
-
|
495 |
-
|
496 |
-
|
497 |
-
|
498 |
-
|
499 |
-
|
500 |
-
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
},
|
505 |
-
|
506 |
-
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
|
514 |
-
|
515 |
},
|
516 |
-
'rougeLsum': {
|
517 |
-
'rougeLsum Low Precision': results["rougeLsum"].low.precision,
|
518 |
-
'rougeLsum Low recall': results["rougeLsum"].low.recall,
|
519 |
-
'rougeLsum Low F1': results["rougeLsum"].low.fmeasure,
|
520 |
-
'rougeLsum Mid Precision': results["rougeLsum"].mid.precision,
|
521 |
-
'rougeLsum Mid recall': results["rougeLsum"].mid.recall,
|
522 |
-
'rougeLsum Mid F1': results["rougeLsum"].mid.fmeasure,
|
523 |
-
'rougeLsum High Precision': results["rougeLsum"].high.precision,
|
524 |
-
'rougeLsum High recall': results["rougeLsum"].high.recall,
|
525 |
-
'rougeLsum High F1': results["rougeLsum"].high.fmeasure,
|
526 |
-
}
|
527 |
}
|
528 |
return output
|
|
|
3 |
from transformers import (
|
4 |
AdamW,
|
5 |
T5ForConditionalGeneration,
|
6 |
+
T5TokenizerFast as T5Tokenizer,
|
7 |
+
MT5Tokenizer,
|
8 |
+
MT5ForConditionalGeneration,
|
9 |
+
ByT5Tokenizer,
|
10 |
)
|
11 |
from torch.utils.data import Dataset, DataLoader
|
12 |
import pytorch_lightning as pl
|
|
|
31 |
"""
|
32 |
|
33 |
def __init__(
|
34 |
+
self,
|
35 |
+
data: pd.DataFrame,
|
36 |
+
tokenizer: T5Tokenizer,
|
37 |
+
source_max_token_len: int = 512,
|
38 |
+
target_max_token_len: int = 512,
|
39 |
):
|
40 |
"""
|
41 |
:param data:
|
|
|
75 |
)
|
76 |
|
77 |
labels = output_encoding["input_ids"]
|
78 |
+
labels[labels == 0] = -100
|
|
|
|
|
79 |
|
80 |
return dict(
|
81 |
keywords=data_row["input_text"],
|
|
|
89 |
|
90 |
class PLDataModule(LightningDataModule):
|
91 |
def __init__(
|
92 |
+
self,
|
93 |
+
train_df: pd.DataFrame,
|
94 |
+
test_df: pd.DataFrame,
|
95 |
+
tokenizer: T5Tokenizer,
|
96 |
+
source_max_token_len: int = 512,
|
97 |
+
target_max_token_len: int = 512,
|
98 |
+
batch_size: int = 4,
|
99 |
+
split: float = 0.1,
|
100 |
+
num_workers: int = 2,
|
101 |
):
|
102 |
"""
|
103 |
:param data_df:
|
|
|
132 |
)
|
133 |
|
134 |
def train_dataloader(self):
|
135 |
+
"""training dataloader"""
|
136 |
return DataLoader(
|
137 |
+
self.train_dataset,
|
138 |
+
batch_size=self.batch_size,
|
139 |
+
shuffle=True,
|
140 |
+
num_workers=self.num_workers,
|
141 |
)
|
142 |
|
143 |
def test_dataloader(self):
|
144 |
+
"""test dataloader"""
|
145 |
return DataLoader(
|
146 |
+
self.test_dataset,
|
147 |
+
batch_size=self.batch_size,
|
148 |
+
shuffle=False,
|
149 |
+
num_workers=self.num_workers,
|
150 |
)
|
151 |
|
152 |
def val_dataloader(self):
|
153 |
+
"""validation dataloader"""
|
154 |
return DataLoader(
|
155 |
+
self.test_dataset,
|
156 |
+
batch_size=self.batch_size,
|
157 |
+
shuffle=False,
|
158 |
+
num_workers=self.num_workers,
|
159 |
)
|
160 |
|
161 |
|
162 |
class LightningModel(LightningModule):
|
163 |
+
"""PyTorch Lightning Model class"""
|
164 |
|
165 |
+
def __init__(
|
166 |
+
self,
|
167 |
+
tokenizer,
|
168 |
+
model,
|
169 |
+
learning_rate,
|
170 |
+
adam_epsilon,
|
171 |
+
weight_decay,
|
172 |
+
output: str = "outputs",
|
173 |
+
):
|
174 |
"""
|
175 |
initiates a PyTorch Lightning Model
|
176 |
Args:
|
|
|
187 |
self.weight_decay = weight_decay
|
188 |
|
189 |
def forward(self, input_ids, attention_mask, decoder_attention_mask, labels=None):
|
190 |
+
"""forward step"""
|
191 |
output = self.model(
|
192 |
input_ids,
|
193 |
attention_mask=attention_mask,
|
|
|
198 |
return output.loss, output.logits
|
199 |
|
200 |
def training_step(self, batch, batch_size):
|
201 |
+
"""training step"""
|
202 |
input_ids = batch["keywords_input_ids"]
|
203 |
attention_mask = batch["keywords_attention_mask"]
|
204 |
labels = batch["labels"]
|
|
|
214 |
return loss
|
215 |
|
216 |
def validation_step(self, batch, batch_size):
|
217 |
+
"""validation step"""
|
218 |
input_ids = batch["keywords_input_ids"]
|
219 |
attention_mask = batch["keywords_attention_mask"]
|
220 |
labels = batch["labels"]
|
|
|
230 |
return loss
|
231 |
|
232 |
def test_step(self, batch, batch_size):
|
233 |
+
"""test step"""
|
234 |
input_ids = batch["keywords_input_ids"]
|
235 |
attention_mask = batch["keywords_attention_mask"]
|
236 |
labels = batch["labels"]
|
|
|
247 |
return loss
|
248 |
|
249 |
def configure_optimizers(self):
|
250 |
+
"""configure optimizers"""
|
251 |
model = self.model
|
252 |
no_decay = ["bias", "LayerNorm.weight"]
|
253 |
optimizer_grouped_parameters = [
|
254 |
{
|
255 |
+
"params": [
|
256 |
+
p
|
257 |
+
for n, p in model.named_parameters()
|
258 |
+
if not any(nd in n for nd in no_decay)
|
259 |
+
],
|
260 |
"weight_decay": self.weight_decay,
|
261 |
},
|
262 |
{
|
263 |
+
"params": [
|
264 |
+
p
|
265 |
+
for n, p in model.named_parameters()
|
266 |
+
if any(nd in n for nd in no_decay)
|
267 |
+
],
|
268 |
"weight_decay": 0.0,
|
269 |
},
|
270 |
]
|
271 |
+
optimizer = AdamW(
|
272 |
+
optimizer_grouped_parameters, lr=self.learning_rate, eps=self.adam_epsilon
|
273 |
+
)
|
274 |
self.opt = optimizer
|
275 |
return [optimizer]
|
276 |
|
277 |
|
278 |
class Summarization:
|
279 |
+
"""Custom Summarization class"""
|
280 |
|
281 |
def __init__(self) -> None:
|
282 |
+
"""initiates Summarization class"""
|
283 |
pass
|
284 |
|
285 |
def from_pretrained(self, model_type="t5", model_name="t5-base") -> None:
|
|
|
306 |
)
|
307 |
|
308 |
def train(
|
309 |
+
self,
|
310 |
+
train_df: pd.DataFrame,
|
311 |
+
eval_df: pd.DataFrame,
|
312 |
+
source_max_token_len: int = 512,
|
313 |
+
target_max_token_len: int = 512,
|
314 |
+
batch_size: int = 8,
|
315 |
+
max_epochs: int = 5,
|
316 |
+
use_gpu: bool = True,
|
317 |
+
outputdir: str = "models",
|
318 |
+
early_stopping_patience_epochs: int = 0, # 0 to disable early stopping feature
|
319 |
+
learning_rate: float = 0.0001,
|
320 |
+
adam_epsilon: float = 0.01,
|
321 |
+
num_workers: int = 2,
|
322 |
+
weight_decay: float = 0.0001,
|
323 |
):
|
324 |
"""
|
325 |
trains T5/MT5 model on custom dataset
|
|
|
351 |
)
|
352 |
|
353 |
self.T5Model = LightningModel(
|
354 |
+
tokenizer=self.tokenizer,
|
355 |
+
model=self.model,
|
356 |
+
output=outputdir,
|
357 |
+
learning_rate=learning_rate,
|
358 |
+
adam_epsilon=adam_epsilon,
|
359 |
+
weight_decay=weight_decay,
|
360 |
)
|
361 |
|
362 |
+
MLlogger = MLFlowLogger(
|
363 |
+
experiment_name="Summarization",
|
364 |
+
tracking_uri="https://dagshub.com/gagan3012/summarization.mlflow",
|
365 |
+
)
|
366 |
|
367 |
WandLogger = WandbLogger(project="summarization-dagshub")
|
368 |
|
|
|
395 |
trainer.fit(self.T5Model, self.data_module)
|
396 |
|
397 |
def load_model(
|
398 |
+
self, model_type: str = "t5", model_dir: str = "models", use_gpu: bool = False
|
399 |
):
|
400 |
"""
|
401 |
loads a checkpoint for inferencing/prediction
|
|
|
424 |
if torch.cuda.is_available():
|
425 |
self.device = torch.device("cuda")
|
426 |
else:
|
427 |
+
raise Exception(
|
428 |
+
"exception ---> no gpu found. set use_gpu=False, to use CPU"
|
429 |
+
)
|
430 |
else:
|
431 |
self.device = torch.device("cpu")
|
432 |
|
433 |
self.model = self.model.to(self.device)
|
434 |
|
435 |
+
def save_model(self, model_dir="models"):
|
|
|
|
|
|
|
436 |
"""
|
437 |
Save model to dir
|
438 |
:param model_dir:
|
|
|
443 |
self.model.save_pretrained(path)
|
444 |
|
445 |
def predict(
|
446 |
+
self,
|
447 |
+
source_text: str,
|
448 |
+
max_length: int = 512,
|
449 |
+
num_return_sequences: int = 1,
|
450 |
+
num_beams: int = 2,
|
451 |
+
top_k: int = 50,
|
452 |
+
top_p: float = 0.95,
|
453 |
+
do_sample: bool = True,
|
454 |
+
repetition_penalty: float = 2.5,
|
455 |
+
length_penalty: float = 1.0,
|
456 |
+
early_stopping: bool = True,
|
457 |
+
skip_special_tokens: bool = True,
|
458 |
+
clean_up_tokenization_spaces: bool = True,
|
459 |
):
|
460 |
"""
|
461 |
generates prediction for T5/MT5 model
|
|
|
498 |
)
|
499 |
return preds
|
500 |
|
501 |
+
def evaluate(self, test_df: pd.DataFrame, metrics: str = "rouge"):
|
|
|
|
|
|
|
|
|
502 |
metric = load_metric(metrics)
|
503 |
+
input_text = test_df["input_text"]
|
504 |
+
references = test_df["output_text"]
|
505 |
references = references.to_list()
|
506 |
|
507 |
predictions = [self.predict(x) for x in tqdm(input_text)]
|
|
|
509 |
results = metric.compute(predictions=predictions, references=references)
|
510 |
|
511 |
output = {
|
512 |
+
"Rouge 1": {
|
513 |
+
"Rouge_1 Low Precision": results["rouge1"].low.precision,
|
514 |
+
"Rouge_1 Low recall": results["rouge1"].low.recall,
|
515 |
+
"Rouge_1 Low F1": results["rouge1"].low.fmeasure,
|
516 |
+
"Rouge_1 Mid Precision": results["rouge1"].mid.precision,
|
517 |
+
"Rouge_1 Mid recall": results["rouge1"].mid.recall,
|
518 |
+
"Rouge_1 Mid F1": results["rouge1"].mid.fmeasure,
|
519 |
+
"Rouge_1 High Precision": results["rouge1"].high.precision,
|
520 |
+
"Rouge_1 High recall": results["rouge1"].high.recall,
|
521 |
+
"Rouge_1 High F1": results["rouge1"].high.fmeasure,
|
522 |
+
},
|
523 |
+
"Rouge 2": {
|
524 |
+
"Rouge_2 Low Precision": results["rouge2"].low.precision,
|
525 |
+
"Rouge_2 Low recall": results["rouge2"].low.recall,
|
526 |
+
"Rouge_2 Low F1": results["rouge2"].low.fmeasure,
|
527 |
+
"Rouge_2 Mid Precision": results["rouge2"].mid.precision,
|
528 |
+
"Rouge_2 Mid recall": results["rouge2"].mid.recall,
|
529 |
+
"Rouge_2 Mid F1": results["rouge2"].mid.fmeasure,
|
530 |
+
"Rouge_2 High Precision": results["rouge2"].high.precision,
|
531 |
+
"Rouge_2 High recall": results["rouge2"].high.recall,
|
532 |
+
"Rouge_2 High F1": results["rouge2"].high.fmeasure,
|
533 |
},
|
534 |
+
"Rouge L": {
|
535 |
+
"Rouge_L Low Precision": results["rougeL"].low.precision,
|
536 |
+
"Rouge_L Low recall": results["rougeL"].low.recall,
|
537 |
+
"Rouge_L Low F1": results["rougeL"].low.fmeasure,
|
538 |
+
"Rouge_L Mid Precision": results["rougeL"].mid.precision,
|
539 |
+
"Rouge_L Mid recall": results["rougeL"].mid.recall,
|
540 |
+
"Rouge_L Mid F1": results["rougeL"].mid.fmeasure,
|
541 |
+
"Rouge_L High Precision": results["rougeL"].high.precision,
|
542 |
+
"Rouge_L High recall": results["rougeL"].high.recall,
|
543 |
+
"Rouge_L High F1": results["rougeL"].high.fmeasure,
|
544 |
},
|
545 |
+
"rougeLsum": {
|
546 |
+
"rougeLsum Low Precision": results["rougeLsum"].low.precision,
|
547 |
+
"rougeLsum Low recall": results["rougeLsum"].low.recall,
|
548 |
+
"rougeLsum Low F1": results["rougeLsum"].low.fmeasure,
|
549 |
+
"rougeLsum Mid Precision": results["rougeLsum"].mid.precision,
|
550 |
+
"rougeLsum Mid recall": results["rougeLsum"].mid.recall,
|
551 |
+
"rougeLsum Mid F1": results["rougeLsum"].mid.fmeasure,
|
552 |
+
"rougeLsum High Precision": results["rougeLsum"].high.precision,
|
553 |
+
"rougeLsum High recall": results["rougeLsum"].high.recall,
|
554 |
+
"rougeLsum High F1": results["rougeLsum"].high.fmeasure,
|
555 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
556 |
}
|
557 |
return output
|
src/models/predict_model.py
CHANGED
@@ -11,14 +11,13 @@ def predict_model(text):
|
|
11 |
with open("params.yml") as f:
|
12 |
params = yaml.safe_load(f)
|
13 |
|
14 |
-
|
15 |
model = Summarization()
|
16 |
-
model.load_model(model_type=params[
|
17 |
pre_summary = model.predict(text)
|
18 |
return pre_summary
|
19 |
|
20 |
|
21 |
-
if __name__ ==
|
22 |
-
text = pd.load_csv(
|
23 |
pre_summary = predict_model(text)
|
24 |
print(pre_summary)
|
|
|
11 |
with open("params.yml") as f:
|
12 |
params = yaml.safe_load(f)
|
13 |
|
|
|
14 |
model = Summarization()
|
15 |
+
model.load_model(model_type=params["model_type"], model_dir=params["model_dir"])
|
16 |
pre_summary = model.predict(text)
|
17 |
return pre_summary
|
18 |
|
19 |
|
20 |
+
if __name__ == "__main__":
|
21 |
+
text = pd.load_csv("data/processed/test.csv")["input_text"][0]
|
22 |
pre_summary = predict_model(text)
|
23 |
print(pre_summary)
|
src/models/train_model.py
CHANGED
@@ -14,28 +14,35 @@ def train_model():
|
|
14 |
params = yaml.safe_load(f)
|
15 |
|
16 |
# Load the data
|
17 |
-
train_df = pd.read_csv(
|
18 |
-
eval_df = pd.read_csv(
|
19 |
|
20 |
-
train_df = train_df.sample(frac=params[
|
21 |
-
eval_df = eval_df.sample(frac=params[
|
22 |
|
23 |
model = Summarization()
|
24 |
-
model.from_pretrained(
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
data = json.load(json_file)
|
35 |
|
36 |
-
with open(
|
37 |
json.dump(data, fp)
|
38 |
|
39 |
|
40 |
-
if __name__ ==
|
41 |
train_model()
|
|
|
14 |
params = yaml.safe_load(f)
|
15 |
|
16 |
# Load the data
|
17 |
+
train_df = pd.read_csv("data/processed/train.csv")
|
18 |
+
eval_df = pd.read_csv("data/processed/validation.csv")
|
19 |
|
20 |
+
train_df = train_df.sample(frac=params["split"], replace=True, random_state=1)
|
21 |
+
eval_df = eval_df.sample(frac=params["split"], replace=True, random_state=1)
|
22 |
|
23 |
model = Summarization()
|
24 |
+
model.from_pretrained(
|
25 |
+
model_type=params["model_type"], model_name=params["model_name"]
|
26 |
+
)
|
27 |
+
|
28 |
+
model.train(
|
29 |
+
train_df=train_df,
|
30 |
+
eval_df=eval_df,
|
31 |
+
batch_size=params["batch_size"],
|
32 |
+
max_epochs=params["epochs"],
|
33 |
+
use_gpu=params["use_gpu"],
|
34 |
+
learning_rate=float(params["learning_rate"]),
|
35 |
+
num_workers=int(params["num_workers"]),
|
36 |
+
)
|
37 |
+
|
38 |
+
model.save_model(model_dir=params["model_dir"])
|
39 |
+
|
40 |
+
with open("wandb/latest-run/files/wandb-summary.json") as json_file:
|
41 |
data = json.load(json_file)
|
42 |
|
43 |
+
with open("reports/training_metrics.txt", "w") as fp:
|
44 |
json.dump(data, fp)
|
45 |
|
46 |
|
47 |
+
if __name__ == "__main__":
|
48 |
train_model()
|