File size: 9,248 Bytes
f641099
 
 
 
 
 
 
 
 
 
 
 
b88af23
f641099
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
from fastapi import APIRouter, Body, HTTPException
from fastapi.responses import StreamingResponse
from models.tts_manager import TTSModelManager
from tts_config import SPEED, ResponseFormat, config
from utils.helpers import chunk_text
from logging_config import logger
from typing import Annotated, List
import io
import zipfile
import soundfile as sf
import numpy as np
from time import perf_counter
import torch
router = APIRouter()
tts_model_manager = TTSModelManager()

@router.post("/audio/speech")
async def generate_audio(
    input: Annotated[str, Body()] = config.input,
    voice: Annotated[str, Body()] = config.voice,
    model: Annotated[str, Body()] = config.model,
    response_format: Annotated[ResponseFormat, Body(include_in_schema=False)] = config.response_format,
    speed: Annotated[float, Body(include_in_schema=False)] = SPEED,
) -> StreamingResponse:
    tts, tokenizer, description_tokenizer = tts_model_manager.get_or_load_model(model)
    if speed != SPEED:
        logger.warning("Specifying speed isn't supported by this model. Audio will be generated with the default speed")
    start = perf_counter()

    cache_key = f"{input}_{voice}_{response_format}"
    if cache_key in tts_model_manager.audio_cache:
        logger.info("Returning cached audio")
        audio_buffer = io.BytesIO(tts_model_manager.audio_cache[cache_key])
        audio_buffer.seek(0)
        return StreamingResponse(audio_buffer, media_type=f"audio/{response_format}")

    all_chunks = chunk_text(input, chunk_size=10)

    cache_key_voice = f"voice_{voice}"
    if cache_key_voice in tts_model_manager.voice_cache:
        desc_inputs = tts_model_manager.voice_cache[cache_key_voice]
        logger.info("Using cached voice description")
    else:
        desc_inputs = description_tokenizer(voice,
                                          return_tensors="pt",
                                          padding="max_length",
                                          max_length=tts_model_manager.max_length).to("cuda" if torch.cuda.is_available() else "cpu")
        tts_model_manager.voice_cache[cache_key_voice] = desc_inputs

    if len(all_chunks) == 1:
        prompt_inputs = tokenizer(input,
                                return_tensors="pt",
                                padding="max_length",
                                max_length=tts_model_manager.max_length).to("cuda" if torch.cuda.is_available() else "cpu")
        
        generation = tts.generate(
            input_ids=desc_inputs["input_ids"],
            prompt_input_ids=prompt_inputs["input_ids"],
            attention_mask=desc_inputs["attention_mask"],
            prompt_attention_mask=prompt_inputs["attention_mask"]
        ).to(torch.float32)
        audio_arr = generation.cpu().float().numpy().squeeze()
    else:
        all_descriptions = [voice] * len(all_chunks)
        description_inputs = description_tokenizer(all_descriptions,
                                                 return_tensors="pt",
                                                 padding=True).to("cuda" if torch.cuda.is_available() else "cpu")
        prompts = tokenizer(all_chunks,
                          return_tensors="pt",
                          padding=True).to("cuda" if torch.cuda.is_available() else "cpu")

        generation = tts.generate(
            input_ids=description_inputs["input_ids"],
            attention_mask=description_inputs["attention_mask"],
            prompt_input_ids=prompts["input_ids"],
            prompt_attention_mask=prompts["attention_mask"],
            do_sample=False,
            return_dict_in_generate=True,
        )
        
        chunk_audios = []
        for i, audio in enumerate(generation.sequences):
            audio_data = audio[:generation.audios_length[i]].cpu().float().numpy().squeeze()
            chunk_audios.append(audio_data)
        audio_arr = np.concatenate(chunk_audios)

    logger.info(f"Took {perf_counter() - start:.2f} seconds to generate audio for {len(input.split())} words")

    audio_buffer = io.BytesIO()
    sf.write(audio_buffer, audio_arr, tts.config.sampling_rate, format=response_format)
    audio_buffer.seek(0)
    tts_model_manager.audio_cache[cache_key] = audio_buffer.getvalue()
    return StreamingResponse(audio_buffer, media_type=f"audio/{response_format}")

@router.post("/audio/speech_batch")
async def generate_audio_batch(
    input: Annotated[List[str], Body()] = config.input,
    voice: Annotated[List[str], Body()] = config.voice,
    model: Annotated[str, Body(include_in_schema=False)] = config.model,
    response_format: Annotated[ResponseFormat, Body()] = config.response_format,
    speed: Annotated[float, Body(include_in_schema=False)] = SPEED,
) -> StreamingResponse:
    tts, tokenizer, description_tokenizer = tts_model_manager.get_or_load_model(model)
    if speed != SPEED:
        logger.warning("Specifying speed isn't supported by this model. Audio will be generated with the default speed")
    start = perf_counter()

    cached_outputs = []
    uncached_inputs = []
    uncached_voices = []
    cache_keys = [f"{text}_{voice[i]}_{response_format}" for i, text in enumerate(input)]
    for i, key in enumerate(cache_keys):
        if key in tts_model_manager.audio_cache:
            cached_outputs.append((i, tts_model_manager.audio_cache[key]))
        else:
            uncached_inputs.append(input[i])
            uncached_voices.append(voice[i])

    if uncached_inputs:
        all_chunks = []
        all_descriptions = []
        for i, text in enumerate(uncached_inputs):
            chunks = chunk_text(text, chunk_size=10)
            all_chunks.extend(chunks)
            all_descriptions.extend([uncached_voices[i]] * len(chunks))

        unique_descriptions = list(set(all_descriptions))
        desc_inputs_dict = {}
        for desc in unique_descriptions:
            cache_key_voice = f"voice_{desc}"
            if cache_key_voice in tts_model_manager.voice_cache:
                desc_inputs_dict[desc] = tts_model_manager.voice_cache[cache_key_voice]
            else:
                desc_inputs = description_tokenizer(desc,
                                                  return_tensors="pt",
                                                  padding="max_length",
                                                  max_length=tts_model_manager.max_length).to("cuda" if torch.cuda.is_available() else "cpu")
                desc_inputs_dict[desc] = desc_inputs
                tts_model_manager.voice_cache[cache_key_voice] = desc_inputs

        description_inputs = description_tokenizer(all_descriptions,
                                                 return_tensors="pt",
                                                 padding=True).to("cuda" if torch.cuda.is_available() else "cpu")
        prompts = tokenizer(all_chunks,
                          return_tensors="pt",
                          padding=True).to("cuda" if torch.cuda.is_available() else "cpu")

        generation = tts.generate(
            input_ids=description_inputs["input_ids"],
            attention_mask=description_inputs["attention_mask"],
            prompt_input_ids=prompts["input_ids"],
            prompt_attention_mask=prompts["attention_mask"],
            do_sample=False,
            return_dict_in_generate=True,
        )

        audio_outputs = []
        current_index = 0
        for i, text in enumerate(uncached_inputs):
            chunks = chunk_text(text, chunk_size=10)
            chunk_audios = []
            for _ in range(len(chunks)):
                audio_arr = generation.sequences[current_index][:generation.audios_length[current_index]].cpu().float().numpy().squeeze()
                chunk_audios.append(audio_arr)
                current_index += 1
            combined_audio = np.concatenate(chunk_audios)
            audio_outputs.append(combined_audio)

        for i, (text, voice_) in enumerate(zip(uncached_inputs, uncached_voices)):
            key = f"{text}_{voice_}_{response_format}"
            audio_buffer = io.BytesIO()
            sf.write(audio_buffer, audio_outputs[i], tts.config.sampling_rate, format=response_format)
            audio_buffer.seek(0)
            tts_model_manager.audio_cache[key] = audio_buffer.getvalue()

    final_outputs = [None] * len(input)
    for idx, audio_data in cached_outputs:
        final_outputs[idx] = audio_data
    uncached_idx = 0
    for i in range(len(final_outputs)):
        if final_outputs[i] is None:
            audio_buffer = io.BytesIO()
            sf.write(audio_buffer, audio_outputs[uncached_idx], tts.config.sampling_rate, format=response_format)
            audio_buffer.seek(0)
            final_outputs[i] = audio_buffer.getvalue()
            uncached_idx += 1

    file_data = {f"out_{i}.{response_format}": data for i, data in enumerate(final_outputs)}
    in_memory_zip = io.BytesIO()
    with zipfile.ZipFile(in_memory_zip, 'w') as zipf:
        for file_name, data in file_data.items():
            zipf.writestr(file_name, data)
    in_memory_zip.seek(0)

    logger.info(f"Took {perf_counter() - start:.2f} seconds to generate audio batch")
    return StreamingResponse(in_memory_zip, media_type="application/zip")